[1] 张清东, 张勃洋, 李瑞, 等. 钢板微观表面质量控制理论与技术研究进展. 机械工程学报, 2016, 52(10):32 doi: 10.3901/JME.2016.10.032

Zhang Q D, Zhang B Y, Li R, et al. Advances in theory and technology for microscopic surface quality control of steel strip. J Mech Eng, 2016, 52(10): 32 doi: 10.3901/JME.2016.10.032
[2] 张清东, 张勃洋, 李瑞, 等. 镀锡钢板表面光泽度轧制转印控制. 机械工程学报, 2016, 52(14):48 doi: 10.3901/JME.2016.14.048

Zhang Q D, Zhang B Y, Li R, et al. Control of surface glossiness during temper rolling aimed at improving visual aesthetics of tinplate. J Mech Eng, 2016, 52(14): 48 doi: 10.3901/JME.2016.14.048
[3] 徐冬, 李洪波, 张杰, 等. 冷轧平整机毛化辊表面形貌特征多参数对比分析. 中南大学学报(自然科学版), 2014, 45(3):734

Xu D, Li H B, Zhang J, et al. Surface topography multi-parameter analysis of textured rolls in cold temper mill. J Cent South Univ Sci Technol, 2014, 45(3): 734
[4] 王桥医, 朱媛, 过山, 等. 基于轧制界面表面粗糙度特征的板带轧机混合润滑特性研究. 中南大学学报(自然科学版), 2019, 50(1):83 doi: 10.11817/j.issn.1672-7207.2019.01.012

Wang Q Y, Zhu Y, Guo S, et al. Research on mixed lubrication characteristics of strip mill based on surface roughness features of rolling interface. J Cent South Univ Sci Technol, 2019, 50(1): 83 doi: 10.11817/j.issn.1672-7207.2019.01.012
[5] 孙荣生, 王静, 刘英明, 等. 冷连轧机组轧后钢板表面形貌的控制//第十一届中国钢铁年会论文集. 北京, 2017: 1

Sun R S, Wang J, Liu Y M, et al. The control measure of the surface topography on the cold rolling strip//Proceedings of 11th China Iron & Steel Annual Meeting. Beijing, 2017: 1
[6] 尤媛, 李洪波, 夏春雨, 等. 冷轧毛化工作辊表面粗糙度衰减过程的试验与数学模型研究. 机械工程学报, 2018, 54(12):173 doi: 10.3901/JME.2018.12.173

You Y, Li H B, Xia C Y, et al. Experimental and mathematical model study of attenuation process of the surface roughness of textured work rolls during cold rolling. J Mech Eng, 2018, 54(12): 173 doi: 10.3901/JME.2018.12.173
[7] Li R, Zhang Q D, Zhang X F, et al. Control method for steel strip roughness in two-stand temper mill rolling. Chin J Mech Eng, 2015, 28(3): 573 doi: 10.3901/CJME.2015.0310.027
[8] 张清东, 张勃洋, 马磊, 等. 高强度带钢表面粗糙度轧制转印规律及预测模型. 工程科学学报, 2016, 38(1):118

Zhang Q D, Zhang B Y, Ma L, et al. Surface roughness rolling-transfer regularity and prediction model of high strength steel strips. Chin J Eng, 2016, 38(1): 118
[9] 白振华, 王骏飞. 冷连轧机成品板面粗糙度控制技术的研究. 钢铁, 2006, 41(11):46 doi: 10.3321/j.issn:0449-749X.2006.11.013

Bai Z H, Wang J F. Control technique for surface roughness of strip in cold tandem rolling. Iron Steel, 2006, 41(11): 46 doi: 10.3321/j.issn:0449-749X.2006.11.013
[10] Plouraboué F, Boehm M. Multiscale roughness transfer in cold metal rolling. Tribol Int, 1999, 32(1): 45 doi: 10.1016/S0301-679X(99)00013-4
[11] Dick K, Lenard J G. The effect of roll roughness and lubricant viscosity on the loads on the mill during cold rolling of steel strips. J Mater Process Technol, 2005, 168(1): 16 doi: 10.1016/j.jmatprotec.2004.09.091
[12] Jiang Z Y, Tieu A K. Contact mechanism and work roll wear in cold rolling thin strip. Wear, 2007, 263(7-12): 1447 doi: 10.1016/j.wear.2006.12.068
[13] 陈金山, 李长生, 曹勇. 轧辊粗糙度对不锈钢板带表面和工艺参数的影响. 机械工程学报, 2013, 49(4):30 doi: 10.3901/JME.2013.04.030

Chen J S, Li C S, Cao Y. Effects of roll roughness on surface and process parameters for stainless-steel strip. J Mech Eng, 2013, 49(4): 30 doi: 10.3901/JME.2013.04.030
[14] 徐冬, 杨荃, 王晓晨, 等. 冷轧界面油膜厚度对表面形貌转印过程的影响. 哈尔滨工业大学学报, 2017, 49(1):160 doi: 10.11918/j.issn.0367-6234.2017.01.024

Xu D, Yang Q, Wang X C, et al. Influence of lubrication film thickness on transfer of surface topography at cold rolling interface. J Harbin Inst Technol, 2017, 49(1): 160 doi: 10.11918/j.issn.0367-6234.2017.01.024
[15] 高兴昌. 冷轧带钢表面粗糙度的影响因素与复制率研究. 本钢技术, 2013(1):31

Gao X C. Study on control technology of cold rolled strip roughness. Bengang Technol, 2013(1): 31
[16] 张佳康, 周晓敏, 蒋靖. 冷轧带钢表面微观形貌轧制转印规律分析. 金属世界, 2018(3):34 doi: 10.3969/j.issn.1000-6826.2018.03.09

Zhang J K, Zhou X M, Jiang J. Analysis of the rolling transfer fabrication of cold rolled steel strip surface micro-topography. Met World, 2018(3): 34 doi: 10.3969/j.issn.1000-6826.2018.03.09
[17] 井玉安, 臧晓明, 商秋月, 等. 酸洗冷轧过程中轧件表面形貌演变规律研究. 轧钢, 2015, 32(1):31

Jing Y A, Zang X M, Shang Q Y, et al. Evolution of surface morphologies of piece in process of cold rolling. Steel Roll, 2015, 32(1): 31
[18] Shi J Y, McElwain D L S, Domanti S A. Some surface profiles of a strip after plane-strain indentation by rigid bodies with serrated surfaces. J Mater Process Technol, 2002, 124(1-2): 227 doi: 10.1016/S0924-0136(02)00177-2
[19] Wu C H, Zhang L C, Qu P L, et al. A new method for predicting the three-dimensional surface texture transfer in the skin pass rolling of metal strips. Wear, 2019, 426-427: 1246 doi: 10.1016/j.wear.2018.12.020
[20] Giarola A M, Pereira P H R, Stemler P A, et al. Strain heterogeneities in the rolling direction of steel sheets submitted to the skin pass: A finite element analysis. J Mater Process Technol, 2015, 216: 234 doi: 10.1016/j.jmatprotec.2014.09.015
[21] 张晓峰, 李瑞, 张勃洋, 等. 平整轧制过程中带钢表面形貌的生成模型. 机械工程学报, 2013, 49(14):38 doi: 10.3901/JME.2013.14.038

Zhang X F, Li R, Zhang B Y, et al. Model for the generation of surface topography in steel strip temper rolling. J Mech Eng, 2013, 49(14): 38 doi: 10.3901/JME.2013.14.038
[22] Mishra M, Egberts P, Bennewitz R, et al. Friction model for single-asperity elastic-plastic contacts. Phys Rev B, 2012, 86(4): 045452 doi: 10.1103/PhysRevB.86.045452
[23] Poulios K, Klit P. Implementation and applications of a finite-element model for the contact between rough surfaces. Wear, 2013, 303(1-2): 1 doi: 10.1016/j.wear.2013.02.024
[24] Mulvihill D M, Kartal M E, Nowell D, et al. An elastic–plastic asperity interaction model for sliding friction. Tribol Int, 2011, 44(12): 1679 doi: 10.1016/j.triboint.2011.06.018
[25] Le H R, Sutcliffe M P F. Finite element modelling of the evolution of surface pits in metal forming processes. J Mater Process Technol, 2004, 145(3): 391 doi: 10.1016/j.jmatprotec.2003.09.007
[26] 徐冬, 张杰, 李洪波, 等. 冷轧带钢表面粗糙度影响因素及控制策略. 中南大学学报(自然科学版), 2017, 48(1):112 doi: 10.11817/j.issn.1672-7207.2017.01.016

Xu D, Zhang J, Li H B, et al. Influence factors and control strategy of cold rolled strip surface roughness. J Cent South Univ Sci Technol, 2017, 48(1): 112 doi: 10.11817/j.issn.1672-7207.2017.01.016