[1] Feng L, Li S H, Li Y S, et al. Super-hydrophobic surfaces: From natural to artificial. Adv Mater, 2002, 14(24): 1857 doi: 10.1002/adma.200290020
[2] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202(1): 1
[3] Autumn K, Liang Y A, Hsieh S T, et al. Adhesive force of a single gecko foot-hair. Nature, 2000, 405(6787): 681 doi: 10.1038/35015073
[4] Parker A R, Lawrence C R. Water capture by a desert beetle. Nature, 2001, 414(6859): 33 doi: 10.1038/35102108
[5] Gao X F, Jiang L. Biophysics: water-repellent legs of water striders. Nature, 2004, 432(7013): 36 doi: 10.1038/432036a
[6] Wen G, Guo Z G, Liu W M. Biomimetic polymeric superhydrophobic surfaces and nanostructures: From fabrication to applications. Nanoscale, 2017, 9(10): 3338 doi: 10.1039/C7NR00096K
[7] Latthe S S, Sutar R S, Kodag V S, et al. Self-cleaning superhydrophobic coatings: Potential industrial applications. Prog Org Coat, 2019, 128: 52 doi: 10.1016/j.porgcoat.2018.12.008
[8] Bai X G, Shen Y Q, Tian H F, et al. Facile fabrication of superhydrophobic wood slice for effective water-in-oil emulsion separation. Sep Purif Technol, 2019, 210: 402 doi: 10.1016/j.seppur.2018.08.010
[9] Cui M K, Mu P, Shen Y Q, et al. Three-dimensional attapulgite with sandwich-like architecture used for multifunctional water remediation. Sep Purif Technol, 2020, 235: 116210 doi: 10.1016/j.seppur.2019.116210
[10] He Z K, Ma M, Xu X C, et al. Fabrication of superhydrophobic coating via a facile and versatile method based on nanoparticle aggregates. Appl Surf Sci, 2012, 258(7): 2544 doi: 10.1016/j.apsusc.2011.10.090
[11] Feng L B, Che Y H, Liu Y H, et al. Fabrication of superhydrophobic aluminium alloy surface with excellent corrosion resistance by a facile and environment-friendly method. Appl Surf Sci, 2013, 283: 367 doi: 10.1016/j.apsusc.2013.06.117
[12] Wang B, Guo Z G. Superhydrophobic copper mesh films with rapid oil/water separation properties by electrochemical deposition inspired from butterfly wing. Appl Phys Lett, 2013, 103(6): 063704 doi: 10.1063/1.4817922
[13] Liu Y, Yin X M, Zhang J J, et al. Biomimetic hydrophobic surface fabricated by chemical etching method from hierarchically structured magnesium alloy substrate. Appl Surf Sci, 2013, 280: 845 doi: 10.1016/j.apsusc.2013.05.072
[14] Liu F, Wang S L, Zhang M, et al. Improvement of mechanical robustness of the superhydrophobic wood surface by coating PVA/SiO2 composite polymer. Appl Surf Sci, 2013, 280: 686 doi: 10.1016/j.apsusc.2013.05.043
[15] Park E J, Sim J K, Jeong M G, et al. Transparent and superhydrophobic films prepared with polydimethylsiloxane-coated silica nanoparticles. RSC Adv, 2013, 3(31): 12571 doi: 10.1039/c3ra42402b
[16] Liu X M, He J H. One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces. Langmuir, 2009, 25(19): 11822 doi: 10.1021/la901426r
[17] Zheng Y S, He Y, Qing Y Q, et al. Formation of SiO2/polytetrafluoroethylene hybrid superhydrophobic coating. Appl Surf Sci, 2012, 258(24): 9859 doi: 10.1016/j.apsusc.2012.06.043
[18] Ji S, Ramadhianti P A, Nguyen T B, et al. Simple fabrication approach for superhydrophobic and superoleophobic Al surface. Microelectron Eng, 2013, 111: 404 doi: 10.1016/j.mee.2013.04.010
[19] 佟威, 熊党生. 仿生超疏水表面的发展及其应用研究进展. 无机材料学报, 2019, 34(11):1133

Tong W, Xiong D S. Bioinspired superhydrophobic materials: Progress and functional application. J Inorg Mater, 2019, 34(11): 1133
[20] Geim A K. Graphene: status and prospects. Science, 2009, 324(5934): 1530 doi: 10.1126/science.1158877
[21] Young T. An essay on the cohesion of fluids. Philos Trans R Soc London, 1805, 95: 65 doi: 10.1098/rstl.1805.0005
[22] Wenzel R N. Resistance of solid surfaces to wetting by water. Trans Faraday Soc, 1936, 28(8): 988
[23] Oner D, McCarthy T J. Ultrahydrophobic surfaces: Effects of topography and length scales on wettability. Langmuir, 2000, 16(20): 7777 doi: 10.1021/la000598o
[24] Li H J, Wang X B, Song Y L, et al. Super-"Amphiphobic" aligned carbon nanotube films. Angew Chem, 2001, 113(9): 1793 doi: 10.1002/1521-3757(20010504)113:9<1793::AID-ANGE17930>3.0.CO;2-I
[25] A J, S Jayan J S, Saritha A, et al. Superhydrophobic graphene-based materials with self-cleaning and anticorrosion performance: An appraisal of neoteric advancement and future perspectives. Colloids Surf A, 2020, 606: 125395 doi: 10.1016/j.colsurfa.2020.125395
[26] Chen Z X, Dong L, Yang D, et al. Superhydrophobic graphene-based materials: Surface construction and functional applications. Adv Mater, 2013, 25(37): 5352 doi: 10.1002/adma.201302804
[27] Nguyen-Tri P, Tran H N, Plamondon C O, et al. Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review. Prog Org Coat, 2019, 132: 235 doi: 10.1016/j.porgcoat.2019.03.042
[28] Hooda A, Goyat M S, Pandey J K, et al. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings. Prog Org Coat, 2020, 142: 105557 doi: 10.1016/j.porgcoat.2020.105557
[29] Dalawai S P, Aly M A S, Latthe S S, et al. Recent advances in durability of superhydrophobic self-cleaning technology A critical review. Prog Org Coat, 2020, 138: 105381 doi: 10.1016/j.porgcoat.2019.105381
[30] 刘海东, 应琴, 贾飞, 等. 石墨烯改性聚氨酯超疏水泡沫的制备与表征. 高分子材料科学与工程, 2016, 32(4):115

Liu H D, Ying Q, Jia F, et al. Preparation and characterization of surperhydrophobic foam modified by graphene oxide. Poly Mater Sci Eng, 2016, 32(4): 115
[31] Mo Z H, Luo Z, Huang Q, et al. Superhydrophobic hybrid membranes by grafting arc-like macromolecular bridges on graphene sheets: Synthesis, characterization and properties. Appl Surf Sci, 2018, 440: 359 doi: 10.1016/j.apsusc.2017.12.268
[32] Liao X F, Li H Q, Zhang L, et al. Superhydrophobic mGO/PDMS hybrid coating on polyester fabric for oil/water separation. Prog Org Coat, 2018, 115: 172 doi: 10.1016/j.porgcoat.2017.12.001
[33] He S J, Zhan Y Q, Zhao S M, et al. Design of stable super-hydrophobic/super-oleophilic 3D carbon fiber felt decorated with Fe3O4 nanoparticles: Facial strategy, magnetic drive and continuous oil/water separation in harsh environments. Appl Surf Sci, 2019, 494: 1072 doi: 10.1016/j.apsusc.2019.07.258
[34] Saharudin K A, Karim M A, Sreekantan S. Preparation of a polydimethylsiloxane (PDMS)/graphene-based super-hydrophobic coating. Mater Today Proc, 2019, 17: 752 doi: 10.1016/j.matpr.2019.06.359
[35] Tang W J, Sun D, Liu S H, et al. One step electrochemical fabricating of the biomimetic graphene skins with superhydrophobicity and superoleophilicity for highly efficient oil-water separation. Sep Purif Technol, 2020, 236: 116293 doi: 10.1016/j.seppur.2019.116293
[36] Bai Z G, Zhang B. Fabrication of superhydrophobic reduced-graphene oxide/nickel coating with mechanical durability, self-cleaning and anticorrosion performance. Nano Mater Sci, 2020, 2(2): 151 doi: 10.1016/j.nanoms.2019.05.001
[37] Ding S B, Xiang T F, Li C, et al. Fabrication of self-cleaning super-hydrophobic nickel/graphene hybrid film with improved corrosion resistance on mild steel. Mater Des, 2017, 117: 280 doi: 10.1016/j.matdes.2016.12.084
[38] Liang J F, Wu X W, Ling Y H, et al. Trilaminar structure hydrophobic graphene oxide decorated organosilane composite coatings for corrosion protection. Surf Coat Technol, 2018, 339: 65 doi: 10.1016/j.surfcoat.2018.02.002
[39] Zhu X B, Zhou S G, Yan Q Q, et al. Ternary graphene/amorphous carbon/nickel nanocomposite film for outstanding superhydrophobicity. Chem Phys, 2018, 505: 19 doi: 10.1016/j.chemphys.2018.03.008
[40] Jena G, Thinaharan C, George R P, et al. Robust nickel-reduced graphene oxide-myristic acid superhydrophobic coating on carbon steel using electrochemical codeposition and its corrosion resistance. Surf Coat Technol, 2020, 397: 125942 doi: 10.1016/j.surfcoat.2020.125942
[41] Yoon J C, Yoon C S, Lee J S, et al. Lotus leaf-inspired CVD grown graphene for a water repellant flexible transparent electrode. Chem Commun, 2013, 49(90): 10626 doi: 10.1039/c3cc46156d
[42] Zheng Z H, Liu Y, Bai Y, et al. Fabrication of biomimetic hydrophobic patterned graphene surface with ecofriendly anti-corrosion properties for Al alloy. Colloids Surf A, 2016, 500: 64 doi: 10.1016/j.colsurfa.2016.04.008
[43] Ong C C, Saheed M S M, Mohamed N M, et al. Highly hydrophobic 3D graphene-carbon nanotubes composite film for oil absorption. Mater Today Proc, 2019, 16: 1772 doi: 10.1016/j.matpr.2019.06.048
[44] Li Y L, Luong D X, Zhang J B, et al. Laser-induced graphene in controlled atmospheres: from superhydrophilic to superhydrophobic surfaces. Adv Mater, 2017, 29(27): 1700496 doi: 10.1002/adma.201700496
[45] Nasser J, Lin J J, Zhang L S, et al. Laser induced graphene printing of spatially controlled super-hydrophobic/hydrophilic surfaces. Carbon, 2020, 162: 570 doi: 10.1016/j.carbon.2020.03.002
[46] Wu W B, Liang R X, Lu L S, et al. Preparation of superhydrophobic laser-induced graphene using taro leaf structure as templates. Surf Coat Technol, 2020, 393: 125744 doi: 10.1016/j.surfcoat.2020.125744
[47] Wang J N, Shao R Q, Zhang Y L, et al. Biomimetic graphene surfaces with superhydrophobicity and iridescence. Chem Asian J, 2012, 7(2): 301 doi: 10.1002/asia.201100882
[48] Song Y Y, Liu Y, Jiang H B, et al. Biomimetic super hydrophobic structured graphene on stainless steel surface by laser processing and transfer technology. Surf Coat Technol, 2017, 328: 152 doi: 10.1016/j.surfcoat.2017.08.031
[49] 弯艳玲, 崔普, 徐丽宁, 等. 基于图像处理技术界定微纳复合织构防覆冰性能. 表面技术, 2019, 48(8):54

Wan Y L, Cui P, Xu L N, et al. Anti-icing performance of micro-nano composite texture based on image processing technology. Surf Technol, 2019, 48(8): 54
[50] Jiang H B, Zhang Y L, Han D D, et al. Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference. Adv Funct Mater, 2014, 24(29): 4720 doi: 10.1002/adfm.201470194
[51] Shateri-Khalilabad M, Yazdanshenas M E. Preparation of superhydrophobic electroconductive graphene-coated cotton cellulose. Cellulose, 2013, 20(2): 963 doi: 10.1007/s10570-013-9873-y
[52] Zhang X T, Liu D Y, Ma Y L, et al. Super-hydrophobic graphene coated polyurethane (GN@PU) sponge with great oil-water separation performance. Appl Surf Sci, 2017, 422: 116 doi: 10.1016/j.apsusc.2017.06.009
[53] Peng M, Chen G Q, Zeng G M, et al. Superhydrophobic kaolinite modified graphene oxide-melamine sponge with excellent properties for oil-water separation. Appl Clay Sci, 2018, 163: 63 doi: 10.1016/j.clay.2018.07.008
[54] Lü C J, Wang H Y, Liu Z J, et al. Fabrication of durable fluorine-free polyphenylene sulfide/silicone resin composite superhydrophobic coating enhanced by carbon nanotubes/graphene fillers. Prog Org Coat, 2019, 134: 1 doi: 10.1016/j.porgcoat.2019.04.042
[55] Uzoma P C, Liu F C, Xu L, et al. Superhydrophobicity, conductivity and anticorrosion of robust siloxane-acrylic coatings modified with graphene nanosheets. Prog Org Coat, 2019, 127: 239 doi: 10.1016/j.porgcoat.2018.11.018
[56] Zhang X G, Liu Z J, Li Y, et al. Robust superhydrophobic epoxy composite coating prepared by dual interfacial enhancement. Chem Eng J, 2019, 371: 276 doi: 10.1016/j.cej.2019.04.040
[57] Wang P, Yao T, Sun B, et al. A cost-effective method for preparing mechanically stable anti-corrosive superhydrophobic coating based on electrochemically exfoliated graphene. Colloids Surf A, 2017, 513: 396 doi: 10.1016/j.colsurfa.2016.11.002
[58] Liu Y, Zhang J J, Li S Y, et al. Fabrication of a superhydrophobic graphene surface with excellent mechanical abrasion and corrosion resistance on an aluminum alloy substrate. RSC Adv, 2014, 4(85): 45389 doi: 10.1039/C4RA06051B
[59] 陈宁宁, 王燕华, 钟莲, 等. 石墨烯/硬脂酸超疏水复合膜层的防腐性能. 材料研究学报, 2017, 31(10):751 doi: 10.11901/1005.3093.2016.617

Chen N N, Wang Y H, Zhong L, et al. Anticorrosion performance of super-hydrophobic complex film of graphene/stearic acid on AZ91 Mg-alloy. J Mater Res, 2017, 31(10): 751 doi: 10.11901/1005.3093.2016.617
[60] Wang Y, Yu Y, Hu X B, et al. p-phenylenediamine strengthened graphene oxide for the fabrication of superhydrophobic surface. Mater Des, 2017, 127: 22 doi: 10.1016/j.matdes.2017.04.033
[61] Zhang Y Q, He S J, Hu J X, et al. Robust super-hydrophobic/super-oleophilic sandwich-like UIO-66-F4@rGO composites for efficient and multitasking oil/water separation applications. J Hazard Mater, 2020, 388: 121752 doi: 10.1016/j.jhazmat.2019.121752
[62] Sin Y Y, Huang C C, Lin C N, et al. Ultrastrong adhesion of fluorinated graphene on a substrate: In situ electrochemical conversion to ionic-covalent bonding at the interface. Carbon, 2020, 169: 248 doi: 10.1016/j.carbon.2020.07.067
[63] Wang P, Yao T, Li Z Q, et al. A superhydrophobic/electrothermal synergistically anti-icing strategy based on graphene composite. Compos Sci Technol, 2020, 198: 108307 doi: 10.1016/j.compscitech.2020.108307
[64] Akhtar N, Anemone G, Farias D, et al. Fluorinated graphene provides long lasting ice inhibition in high humidity. Carbon, 2019, 141: 451 doi: 10.1016/j.carbon.2018.09.008
[65] Das A, Maji K, Naskar S, et al. Facile optimization of hierarchical topography and chemistry on magnetically active graphene oxide nanosheets. Chem Sci, 2020, 11(25): 6556 doi: 10.1039/D0SC00517G
[66] Sadeghian Z, Hadidi M R, Salehzadeh D, et al. Hydrophobic octadecylamine-functionalized graphene/TiO2 hybrid coating for corrosion protection of copper bipolar plates in simulated proton exchange membrane fuel cell environment. Int J Hydrogen Energy, 2020, 45(30): 15380 doi: 10.1016/j.ijhydene.2020.04.015
[67] Asaldoust S, Hosseini M S, Ramezanzadeh B, et al. Construction of a unique anti-corrosion nanocomposite based on graphene oxide@Zn3PO4/epoxy; experimental characterization and detailed-theoretical quantum mechanics (QM) investigations. Constr Build Mater, 2020, 256: 119439 doi: 10.1016/j.conbuildmat.2020.119439
[68] Ouadil B, Amadine O, Essamlali Y, et al. A new route for the preparation of hydrophobic and antibacterial textiles fabrics using Ag-loaded graphene nanocomposite. Colloids Surf A, 2019, 579: 123713 doi: 10.1016/j.colsurfa.2019.123713
[69] Jiang N, Wang Y L, Chan K C, et al. Additive manufactured graphene coating with synergistic photothermal and superhydrophobic effects for bactericidal applications. Global Challenges, 2019, 4(1): 1900054