-
由于密排六方金属中可同时启动的滑移系较少,因此孪生成为密排六方金属中重要的塑性变形机制。镁中的孪晶种类主要有
$\left\{ {10\bar 12} \right\}$ 、$\left\{ {11\bar 21} \right\}$ 拉伸孪晶以及$\left\{ {10\bar 11} \right\}$ 、$\left\{ {11\bar 22} \right\}$ 压缩孪晶[1-4]。其中,$\left\{ {10\bar 12} \right\}$ 拉伸孪晶是镁中最常见的孪晶种类。在周期载荷下,$\left\{ {10\bar 12} \right\}$ 拉伸孪晶呈现出显著的去孪晶行为[5-11]。2007年Wang和Huang[5]研究发现,预压缩过程中产生的拉伸孪晶在后续拉伸变形中因去孪晶过程而消退;2013年娄超等[11]的研究表明去孪晶行为可以明显的改变AZ31镁合金的流变应力,并且引起织构变化使得软取向变成硬取向,从而强化材料。可知,去孪晶行为是镁及镁合金疲劳损伤的重要微观机理之一。此外,金属中广泛存在着点缺陷,其迁移和聚集、与其它缺陷的交互作用对金属的力学性能,特别是高温蠕变力学性能产生影响[12-14]。在密排六方金属中,锆可作为核反应堆的防护材料,所以锆中的点缺陷一直备受关注[15-20]。2007年Serra等[18]研究了剪切作用下金属锆中拉伸孪晶共格孪晶界在迁移过程中与间隙原子簇和空位簇的交互作用,指出间隙原子簇的存在阻碍了孪晶界的运动。对于金属镁,研究人员主要关注的是其常温塑性加工方面的力学性能改善,因此与点缺陷相关的研究较少[21-23]。2016年Pasianot等[21]用第一原理方法计算了七种密排六方金属中自间隙原子稳定结构的形成能,并认为镁中的自间隙原子最易以C和S构型存在。1991年Monti等[22]研究了镁和锆中晶界及位错对点缺陷的吸收强度,结果显示吸收强度与点缺陷扩散方向有关。1995年de Diego和Bacon[23]针对镁、锆和钛的不同原子间作用势研究了四种不同共格孪晶界上间隙原子的稳定结构,发现在
$\left\{ {10\bar 12} \right\}$ 孪晶界上BC和S构型相对最稳定。目前,针对镁中去孪晶过程与点缺陷交互作用的研究尚待开展。由于去孪晶过程是镁及镁合金疲劳损伤的重要微观机理之一,去孪晶过程中孪晶界与点缺陷产生的交互作用将对镁及镁合金的疲劳力学性能产生影响,因此,具有重要的研究意义。基于以上分析,本文采用分子动力学方法研究了密排六方金属镁中
$\left\{ {10\bar 12} \right\}$ 拉伸孪晶的去孪晶过程,探讨了去孪晶过程中孪晶界迁移与自间隙原子的交互作用。研究中首先建立了镁单晶的双孪晶界面模型,研究在剪切载荷作用下的去孪晶过程及相关微观变形机制;在此基础上进一步考察了去孪晶过程中共格孪晶界与自间隙原子的交互作用及其微结构演化过程,探讨去孪晶过程对自间隙原子空间分布的影响。 -
本文建立了如图1所示的双孪晶界面模型。模型的x,y,z坐标轴正方向分别对应图示最下部晶粒的
$\left[ {\bar 1011} \right]$ 、$\left[ {1\bar 210} \right]$ 和$\left[ {10\bar 12} \right]$ 晶向。x和y方向采取周期边界条件,z方向为自由边界条件。模型尺寸约为22.7 nm×39.5 nm×2.4 nm,原子总个数约为1.0×105。两个共格孪晶界(Coherent twin boundary, CTB)的间距约为8.3 nm,图中标记为H。H即为孪晶厚度。本文在模拟中对模型施加剪切载荷实现去孪晶过程,对应孪晶厚度H的减小。剪切载荷通过对固定层施加增量位移的方式达到。每次施加的增量位移可产生0.04%的剪切应变,对应着4.25 MPa的剪应力,随后体系以3 fs的时间步长弛豫2000步。在不断施加增量位移并弛豫的过程中,当剪应力达到0.49 GPa,两个共格孪晶界开始相向迁移并随载荷增加而逐渐靠近,最终相互湮灭。本文预置十个自间隙原子(Self-interstitial atom, SIA)随机分布于两个共格孪晶界之间。分子动力学模拟采用Liu等开发的嵌入原子势(Embedded atom method,EAM)[24],并采用等温等压系综(NPT)控制体系的统计物理量,温度设为5 K,在z方向上控压为0 MPa。模拟通过LAMMPS程序[25]来实现,可视化采用AtomEye软件[26]。 -
为了更好地研究自间隙原子与孪晶界的交互作用,本文首先探讨了镁中自间隙原子的微观构型,简称间隙构型。密排六方金属中可能存在的间隙构型共有8种[21],分别为图2(a)中的:O、C、S、T、BO、BC、BS和BT。某些构型还存在变体,如S*和C*,与原有构型S和C稍具差别。在金属镁中,第一原理计算结果指出, S*和C*构型的形成能最低,且因两者构型相近(图2(b)),相互转化所需的能垒也很低[21]。在本文的分子动力学模拟中,共存在5种间隙构型,分别为C*、S*、BO、BC和BS,如图2(b)所示。在体系未受外载的条件下,所预置的自间隙原子多以C*和S*构型存在,并可以相互转化,这与第一原理计算结果相符[21],具体结果将在下文讨论。
-
图3(a)所示为分子动力学模拟中的去孪晶过程。相关研究表明[27-30],共格孪晶界在剪切载荷下的迁移由孪晶位错环的均匀形核及扩展完成。孪晶位错环的形核及扩展在图3(a)中表现为孪晶位错(Twinning dislocation, TD)偶极子的形核及长大。孪晶位错偶极子由两个孪晶位错组成(图3(a2)),它们在剪切作用下反向运动,从而导致共格孪晶界的迁移。模拟结果显示,当两个共格孪晶界迁移至较近距离,晶界上的孪晶位错将于某一区域集中形核(图3(a3~a4))。形核时产生的TD 萌芽(TD embryo)是孪晶位错形核过程中的标志性缺陷结构[27],在图3(a4)中可见。孪晶位错的集中形核使得两个共格孪晶界在此处相接,并随后湮灭,形成基柱界面(Basal/Prismatic interface, BPI)(图3(a5))。基柱界面开始迁移之后孪晶长度缩短。在共格孪晶界迁移及基柱界面迁移的共同作用下,孪晶的两种晶界全部相互湮灭,孪晶消失(图3(a6))。综上,
$\left\{ {10\bar 12} \right\}$ 拉伸孪晶的去孪晶有先后两个不同的过程,首先是共格孪晶界的迁移导致的孪晶厚度减小,然后是基柱界面的迁移导致的孪晶长度缩短,直至孪晶消失。图 3 去孪晶过程(a)及去孪晶过程与自间隙原子交互作用(b)(图中的虚线所示为孪晶内外两部分晶体各自的基面。原子按其势能大小着色。晶界处原子与间隙原子均被放大显示,以便观察)
Figure 3. Detwinning process (a) and interaction between the CTBs and the SIAs (b) (The dotted lines denote the basal planes inside and outside the twin. Atoms are colored according to potential energy. Atoms on the CTB and in the interstitial structure are magnified for observation)
图3(b)为在两个共格孪晶界之间(孪晶内部)预置十个自间隙原子时的去孪晶过程。结果显示,在有自间隙原子的情况下,去孪晶过程中的孪晶界迁移与图3(a)中所示基本一致,但自间隙原子的位置会随着孪晶界迁移而改变。在与共格孪晶界相遇之前,自间隙原子稳定在预置的位置静止不动,并大多处于C*和S*构型。迁移过程中当共格孪晶界经过时,自间隙原子被吸附并随之迁移(图3(b1~b3)),共格孪晶界迁移过后的区域内不再有自间隙原子。被吸附在共格孪晶界上的自间隙原子大多处于BC和S*构型。当去孪晶过程进入以基柱面迁移为主的阶段,原本位于共格孪晶界之上的自间隙原子随着共格孪晶界消失而被释放,停留在孪晶消失时的位置。由于自间隙原子随共格孪晶界的迁移,整个去孪晶过程导致了自间隙原子的空间分布发生变化,最后停留在孪晶消失的区域,并集中在孪晶界消失平面附近。此时,自间隙原子构型以BS、BC和BO构型为主,与去孪晶过程开始之前不同。这是因为自间隙原子在共格孪晶界的影响下沿基平面的扩散特征使其转变为基面构型,即BS,BC和BO。
-
本节我们将通过微观结构演化分析探讨共格孪晶界对自间隙原子的吸附机制。模拟结果显示,对于每一个间隙原子,当共格孪晶界迁移至距该间隙原子足够近的位置时,该自间隙原子会主动向共格孪晶界运动,并吸附于其上,吸附过程如图4(b)所示。自间隙原子无论处于C*构型还是S*构型,都将先迁移至基平面,然后替换<
$11\bar 20$ >方向上离晶界更近的邻近晶格点阵上的原子,使其成为新的自间隙原子。这种替换指向晶界依次发生,沿着基平面上的路径进行(图4(c)中绿色箭头所示),最终导致共格孪晶界上多出一个间隙原子。整个过程等效为原自间隙原子被孪晶界吸收。被吸收的自间隙原子以BC或S*两种构型稳定在晶界上,并且两种构型之间可以相互转化(图4(d))。自间隙原子在共格孪晶界上的BC和S*两种稳定构型曾被Diego等报道过[23]。图 4 NEB计算的系统势能形貌(a);0 K时自间隙原子位于自发吸收区内被共格孪晶界吸收的过程(b)(原子按其势能大小着色,孪晶界处原子与间隙原子均被放大显示);从[0001]方向观察吸收的路径(c);从
$\left[ {1\bar 210} \right]$ 及$\left[ {\bar 1011} \right]$ 两个方向上观察被共格孪晶界吸收后间隙原子的构型(d)(原子按其势能大小着色,左图晶界处原子与间隙原子均被放大显示,以便观察)Figure 4. Potential energy landscape (a) associated with the atomic configurations described in (b); Process of SIA absorption by CTB in the spontaneous absorption region at 0 K (b) (Atoms are colored according to potential energy. Atoms on the CTB and in the interstitial structure are magnified for observation); Path of absorption observed in the [0001] direction (c); Configurations of SIAs absorbed by the CTB observed in the directions of
$\left[ {1\bar 210} \right]$ and$\left[ {\bar 1011} \right]$ (d) (Atoms are colored according to potential energy. Atoms on the CTB and in the interstitial structure are magnified for observation in the left part)基于以上分析,我们推测共格孪晶界两侧应该存在自间隙原子的自发吸收区。为了验证这一推测,我们做了如下模拟研究:在静止的共格孪晶界附近放置一个自间隙原子并弛豫整个体系,弛豫结束后检查自间隙原子是否被共格孪晶界吸收,若被吸收则证明自间隙原子所处位置在自发吸收区内。改变自间隙原子与共格孪晶界之间的距离,重复上述弛豫过程,直至自间隙原子不再被孪晶界吸收。此时两者之间的距离即被认为是自发吸收区的大小。结果显示,在0 K的体系温度下,此自发吸收区约为0.752 nm宽(图4(b)中h1所示区域)。这个结果可以支持在去孪晶过程中观察到的现象,即当共格孪晶界迁移至距间隙原子足够近的位置时,自间隙原子会主动向共格孪晶界靠近并完成吸收过程。此吸收过程可以看做是自间隙原子在共格孪晶界影响下的扩散行为。其沿基平面内的扩散特征与金属锆中自间隙原子沿基平面扩散的特征近似[20]。对于图4(b)所示的过程本文进行了爬坡弹性带方法(The nudged elastic band method,NEB)的计算以得到吸附过程的能垒。计算显示完成(b1)到(b3)的过程需要约0.27 eV的能量(图4(a)),与金属锆中的自间隙原子迁移能垒处于同一量级[17],并明显小于镁中空位的迁移能[31]。同时,考虑到温度是对材料变形机制产生重要影响的因素,且吸附过程与原子扩散相关,暨高温下的扩散应有利于吸附,本文将0 K的温度升高至273 K,考察了自发吸收区大小的变化。计算结果显示,自发吸收区变为3.59 nm宽(h2),约为0 K下的4倍多,且间隙原子的扩散有一定几率脱离基平面进行,如图(5)所示。
图 5 273 K时自间隙原子位于自发吸收区内被共格孪晶界吸收的过程(原子按其势能大小着色,孪晶界处原子与间隙原子均被放大显示)
Figure 5. Process of SIA absorption by a CTB in the spontaneous absorption region at 273 K (Atoms are colored according to potential energy. Atoms on the CTB and in the interstitial structure are magnified for observation)
模拟结果显示,当共格孪晶界迁移时,运动的孪晶位错会与已被吸收并稳定在孪晶界上的自间隙原子相遇(图6(a))。相遇以后孪晶位错将继续运动,其结构和运动形式均不发生改变,而自间隙原子经与孪晶位错的交互作用之后会短暂脱离共格孪晶界(图6(a2))。此时自间隙原子与晶界的距离等于一个孪晶位错的高度(0.340 nm),小于共格孪晶界的自发吸收区宽度(h≥0.752 nm)。所以如图6(a3)至(a4)所示,自间隙原子再次被共格孪晶界吸收。孪晶位错所致的脱离−吸收过程不断重复,导致自间隙原子随共格孪晶界一同迁移。值得注意的是,每一个孪晶位错都会导致自间隙原子逆着孪晶位错运动的方向移动0.395 nm,在图6中标识为b。为了更好地理解吸附过程,本研究也对此跟随迁移的过程(图6(a2)至(a4))进行了NEB的计算。在这个过程中,可以看出孪晶位错的运动相对于自间隙原子的运动较快,固忽略孪晶位错对能垒的影响。计算结果显示当自间隙原子与孪晶界的距离与图6(a2)中所示相同时,迁移能垒为0.06 eV(图6(b))。综上,自间隙原子跟随共格孪晶界迁移的本质在于自发吸收区的吸附作用。
图 6 0 K孪晶位错与共格孪晶界上自间隙原子的交互作用(a)(原子按其势能大小着色。晶界、用于参照的基平面,以及间隙结构中的原子均被放大显示,以便观察),及NEB计算的系统势能形貌(b)
Figure 6. Interaction of TDs and SIAs (a) (Atoms are colored according to potential energy. The atoms in twin boundary, basal planes for reference and in the interstitial structure are magnified for observation), potential energy landscape (b) associated with the atomic configurations described in (a)
-
由图3(a)可知,当两个孪晶界迁移到足够近距离时,两个孪晶界会汇合并形成基柱界面,去孪晶过程将以基柱界面的迁移为主。随着共格孪晶界消失,自间隙原子将被释放到孪晶外部(图3(b))。图7给出了自间隙原子被释放过程中的微结构演化。在图7(a)中可见孪晶上部的共格孪晶界上有两个孪晶位错,它们将相向运动并相互湮灭。此时,在孪晶下部的共格孪晶界上有一个已被吸收的自间隙原子。随后,基柱界面于孪晶右侧形核,并朝向图示左侧迁移,迁移过程中与自间隙原子相遇(图7(b)和(c))。相遇之前自间隙原子在共格孪晶界上的构型保持不变。相遇后自间隙原子脱离共格孪晶界,留存在晶体中。其构型受孪晶界的影响,变为BS、BC和BO构型(图7(d)和(e))。值得注意的是,自间隙原子在脱离孪晶过程中在孪晶方向(<
$\bar 1011$ >方向)上的位置基本保持不变,如图7中的红色虚线所示。 -
(1)分子动力学研究表明,
$\left\{ {10\bar 12} \right\}$ 拉伸孪晶的去孪晶包括共格孪晶界迁移导致的孪晶厚度减小,以及基柱界面的迁移导致的孪晶消失两个过程。共格孪晶界对自间隙具有吸附作用,自间隙将随着共格孪晶界的运动而迁移,并最终随着孪晶界的消失而被释放。因此,去孪晶过程与自间隙原子的相互作用将导致自间隙原子分布变得集中。(2)
$\left\{ {10\bar 12} \right\}$ 拉伸孪晶去孪晶过程与自间隙原子的相互作用同时将导致自间隙原子构型的变化。未和孪晶界反应前自间隙的构型为C*和S*,被孪晶界吸收后稳定为BC或S*,脱离孪晶界后转变为BS、BC和BO构型。(3)
$\left\{ {10\bar 12} \right\}$ 孪晶的共格孪晶界存在一个自间隙原子的自发吸收区,0 K下宽度约为0.752 nm,273 K下约为3.59 nm。自间隙原子位于自发吸收区内时,自间隙原子将被共格孪晶界吸附。同时也因自发吸收区的存在,被吸收的间隙原子将跟随共格孪晶界一同迁移。因此,自间隙原子跟随共格孪晶界迁移的本质在于自发吸收区的吸附作用。
Atomistic simulation of detwinning process and its interaction with self-interstitial atoms in magnesium
-
摘要: 采用分子动力学方法研究了镁中
$\left\{ {10\bar 12} \right\}$ 拉伸孪晶在剪切载荷下的去孪晶过程,并探讨了去孪晶过程中孪晶界面与自间隙原子的交互作用。研究结果表明:去孪晶过程中共格孪晶界对自间隙原子具有吸附作用,自间隙原子被共格孪晶界吸附并随之迁移,且随着共格孪晶界的消失而被释放。通过吸收和释放这两种交互作用,去孪晶过程将导致自间隙原子分布更为密集。研究进一步给出了共格孪晶界对自间隙原子的吸附机理,即共格孪晶界存在一个自间隙原子的自发吸收区,0 K下宽度约为0.752 nm,273 K下约为3.59 nm。去孪晶过程与自间隙原子的交互作用也将导致自间隙原子构型的变化。由于自间隙原子的密集分布可在更长时间尺度上诱发位错环等晶体缺陷,这一研究有助于深入理解镁及镁合金的疲劳力学性能。-
关键词:
- 镁 /
- 分子动力学 /
- $\left\{ {10\bar 12} \right\}$拉伸孪晶 /
- 去孪晶 /
- 自间隙原子
Abstract: Magnesium and its alloys have attracted extensive attention due to their favorable mechanical properties, such as low density and high specific strength. The detwinning process of {$10\bar 12$ } tensile twins subjected to periodic loading is one of the microscopic mechanisms of fatigue damage in magnesium and its alloys. Moreover, self-interstitial atoms (SIAs) widely exist as a typical kind of point defects.in metals. The migration, aggregation, and interaction with other defects, of SIAs affect the metal mechanical properties. In this work, molecular dynamics simulation was employed to study the detwinning process of {$10\bar 12$ } twins under shear loads in magnesium, focusing on the interaction between the twin boundary and SIAs in the detwinning process. A simulation system containing two coherent twin boundaries (CTBs) with periodic boundary conditions applied along the two in-plane directions was adopted. The classic embedded atom method (EAM) interatomic potential developed by Liu et. al was used for simulation accuracy and comparison with other studies. The simulation results show that the SIAs are absorbed by the CTBs and migrate along with them. The absorbed SIAs can be released with the disappearance of the CTBs during the detwinning process. By the SIA adsorption and release, detwinning process will result in a more concentrated SIA distribution. The simulation results reveal that SIAs will be adsorbed by CTB if the distance between the CTB and SIA is less than 0.752 nm at 0 K and 3.59 nm at 273 K. The energy barrier of the adsorption process is also obtained using the nudged elastic band (NEB) method. The SIA spatial distribution change after the SIA interactions with CTB in detwinning process. Given that the crystal defects such as dislocation loops can be induced by the dense distribution of SIAs at a long timescale, this study clarifies the fatigue mechanical properties of magnesium and magnesium alloys subjected to periodic loading.-
Key words:
- magnesium /
- molecular dynamics /
- {$10\bar 12$} twin /
- detwinning /
- self-interstitial atoms
-
图 3 去孪晶过程(a)及去孪晶过程与自间隙原子交互作用(b)(图中的虚线所示为孪晶内外两部分晶体各自的基面。原子按其势能大小着色。晶界处原子与间隙原子均被放大显示,以便观察)
Figure 3. Detwinning process (a) and interaction between the CTBs and the SIAs (b) (The dotted lines denote the basal planes inside and outside the twin. Atoms are colored according to potential energy. Atoms on the CTB and in the interstitial structure are magnified for observation)
图 4 NEB计算的系统势能形貌(a);0 K时自间隙原子位于自发吸收区内被共格孪晶界吸收的过程(b)(原子按其势能大小着色,孪晶界处原子与间隙原子均被放大显示);从[0001]方向观察吸收的路径(c);从
$\left[ {1\bar 210} \right]$ 及$\left[ {\bar 1011} \right]$ 两个方向上观察被共格孪晶界吸收后间隙原子的构型(d)(原子按其势能大小着色,左图晶界处原子与间隙原子均被放大显示,以便观察)Figure 4. Potential energy landscape (a) associated with the atomic configurations described in (b); Process of SIA absorption by CTB in the spontaneous absorption region at 0 K (b) (Atoms are colored according to potential energy. Atoms on the CTB and in the interstitial structure are magnified for observation); Path of absorption observed in the [0001] direction (c); Configurations of SIAs absorbed by the CTB observed in the directions of
$\left[ {1\bar 210} \right]$ and$\left[ {\bar 1011} \right]$ (d) (Atoms are colored according to potential energy. Atoms on the CTB and in the interstitial structure are magnified for observation in the left part)图 6 0 K孪晶位错与共格孪晶界上自间隙原子的交互作用(a)(原子按其势能大小着色。晶界、用于参照的基平面,以及间隙结构中的原子均被放大显示,以便观察),及NEB计算的系统势能形貌(b)
Figure 6. Interaction of TDs and SIAs (a) (Atoms are colored according to potential energy. The atoms in twin boundary, basal planes for reference and in the interstitial structure are magnified for observation), potential energy landscape (b) associated with the atomic configurations described in (a)
-
[1] Yu Q, Qi L, Chen K, et al. The nanostructured origin of deformation twinning. Nano Lett, 2012, 12(2): 887 doi: 10.1021/nl203937t [2] Kelley E W, Hosford W F. Plane-strain compression of magnesium and magnesium alloy crystals. Trans Metall Soc AIME, 1968, 242(1): 5 [3] Guo Y F, Xu S, Tang X Z, er al. Twinnability of hcp metals at the nanoscale. J Appl Phys, 2014, 115(22): 224902 doi: 10.1063/1.4881756 [4] 孟强, 蔡庆伍, 江海涛, 等. AZ31镁合金单轴拉伸过程中的{0002}双峰织构观察. 稀有金属, 2011, 35(2):159 doi: 10.3969/j.issn.0258-7076.2011.02.001 Meng Q, Cai Q W, Jiang H T, et al. {0002} double peak texture of AZ31 magnesium alloy during uniaxial tension. Chin J Rare Met, 2011, 35(2): 159 doi: 10.3969/j.issn.0258-7076.2011.02.001 [5] Wang Y N, Huang J C. The role of twinning and untwinning in yielding behavior in hot-extruded Mg−Al−Zn alloy. Acta Mater, 2007, 55(3): 897 doi: 10.1016/j.actamat.2006.09.010 [6] Yin S M, Yang F, Yang X M, et al. The role of twinning–detwinning on fatigue fracture morphology of Mg−3%Al−1%Zn alloy. Mater Sci Eng A, 2008, 494(1-2): 397 doi: 10.1016/j.msea.2008.04.056 [7] 张愔, 刘天模, 徐舜, 等. 挤压态AZ31镁合金单向压缩过程中的退孪生行为. 材料热处理学报, 2013, 34(8):26 Zhang Y, Liu T M, Xu S, et al. Detwinning behavior of an extruded AZ31 magnesium alloy during uniaxial compression. Trans Mater Heat Treat, 2013, 34(8): 26 [8] Sarker D, Chen D L. Detwinning and strain hardening of an extruded magnesium alloy during compression. Scripta Mater, 2012, 67(2): 165 doi: 10.1016/j.scriptamat.2012.04.007 [9] Morrow B M, McCabe R J, Cerreta E K, et al. In-situ TEM observation of twinning and detwinning during cyclic loading in Mg. Metall Mater Trans A, 2014, 45(1): 36 doi: 10.1007/s11661-013-1765-0 [10] Sun Q, Xia T, Tan L, et al. Influence of { $ 10\bar 12 $ \normalsize } twin characteristics on detwinning in Mg−3Al−1Zn alloy. Mater Sci Eng A, 2018, 735: 243 doi: 10.1016/j.msea.2018.08.051[11] (娄超, 张喜燕, 汪润红, 等. 退孪生行为以及{ $ 10\bar 12 $ \normalsize }孪晶片层结构对镁合金力学性能的影响. 金属学报, 2013, 49(3):291 doi: 10.3724/SP.J.1037.2012.00582 Lou C, Zhang X Y, Wang R H, et al. Effects of untwinning and {$ 10\bar 12 $ \normalsize } twin lamellar structure on the mechanical properties of Mg alloy. Acta Metall Sin, 2013, 49(3): 291 doi: 10.3724/SP.J.1037.2012.00582[12] Mendelev M I, King A H. The interactions of self-interstitials with twin boundaries. Philos Mag, 2013, 93(10-12): 1268 doi: 10.1080/14786435.2012.747012 [13] Yu W S, Shen S P. Energetics of point defect interacting with grain boundaries undergone plastic deformations. Int J Plast, 2016, 85: 93 doi: 10.1016/j.ijplas.2016.07.004 [14] 李晓彤, 汤笑之, 郭雅芳. 经验原子势下铝镁合金中溶质原子向位错芯迁移的最低能量路径. 工程科学学报, 2019, 41(7):898 Li X T, Tang X Z, Guo Y F. Minimum energy path of a solute atom diffusing to an edge dislocation core in Al-Mg alloys based on empirical atomic potential. Chin J Eng, 2019, 41(7): 898 [15] Hood G M. Point defect diffusion in α-Zr. J Nucl Mater, 1988, 159: 149 doi: 10.1016/0022-3115(88)90091-8 [16] Peng Q, Ji W, Huang H C, et al. Stability of self-interstitial atoms in hcp-Zr. J Nucl Mater, 2012, 429(1-3): 233 doi: 10.1016/j.jnucmat.2012.06.010 [17] Samolyuk G D, Barashev A V, Golubov S I, et al. Analysis of the anisotropy of point defect diffusion in hcp Zr. Acta Mater, 2014, 78: 173 doi: 10.1016/j.actamat.2014.06.024 [18] Serra A, Bacon D J, Osetsky Y N. Strengthening and microstructure modification associated with moving twin boundaries in hcp metals. Philos Mag Lett, 2007, 87(7): 451 doi: 10.1080/09500830701244812 [19] 邓玉福, 王钰鑫, 何燕, 等. 原子模拟金属锆中点缺陷行为. 沈阳师范大学学报(自然科学版), 2018, 36(4):295 Deng Y F, Wang Y X, He Y, et al. Atomic simulation of defect behavior in metal zirconium. J Shengyang Normal Univ Nat Sci Ed, 2018, 36(4): 295 [20] Hatami F, Feghhi S A H, Arjhangmehr A, et al. Interaction of primary cascades with different atomic grain boundaries in α-Zr: An atomic scale study. J Nucl Mater, 2016, 480: 362 doi: 10.1016/j.jnucmat.2016.05.036 [21] Pasianot R C. Self-interstitials structure in the hcp metals: A further perspective from first-principles calculations. J Nucl Mater, 2016, 481: 147 doi: 10.1016/j.jnucmat.2016.09.021 [22] Monti A M, Sarce A, Grande N S D, et al. Point defects and sink strength in h. c. p. metals. Philos Mag A, 1991, 63(5): 925 doi: 10.1080/01418619108213925 [23] de Diego N, Bacon D J. A computer simulation study of interstitial-twin boundary interactions in h. c. p. metals. Modell Simul Mater Sci Eng, 1995, 3(6): 797 doi: 10.1088/0965-0393/3/6/004 [24] Liu X Y, Ohotnicky P P, Adams J B, et al. Anisotropic surface segregation in Al-Mg alloys. Surf Sci, 1997, 373(2-3): 357 doi: 10.1016/S0039-6028(96)01154-5 [25] Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys, 1995, 117(1): 1 doi: 10.1006/jcph.1995.1039 [26] Li J. AtomEye: an efficient atomistic configuration viewer. Modell Simul Mater Sci Eng, 2003, 11(2): 173 doi: 10.1088/0965-0393/11/2/305 [27] Tang X Z, Zu Q, Guo Y F. The diffusive character of extension twin boundary migration in magnesium. Mater, 2018, 2: 208 [28] Luque A, Ghazisaeidi M, Curtin W A. A new mechanism for twin growth in Mg alloys. Acta Mater, 2014, 81: 442 doi: 10.1016/j.actamat.2014.08.052 [29] Gleiter H. The mechanism of grain boundary migration. Acta Metall, 1969, 17(5): 565 doi: 10.1016/0001-6160(69)90115-1 [30] Gong M Y, Hirth J P, Liu Y, et al. Interface structures and twinning mechanisms of { $ 10\bar 12 $ \normalsize } twins in hexagonal metals. Mater Res Lett, 2017, 5(7): 449 doi: 10.1080/21663831.2017.1336496[31] Bacon D J. A review of computer models of point defects in hcp metals. J Nucl Mater, 1988, 159: 176. -