• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

循环扰动荷载作用下花岗岩中裂隙萌生扩展过程的颗粒流模拟

张杰 郭奇峰 蔡美峰 张英 汪炳锋 吴星辉

张杰, 郭奇峰, 蔡美峰, 张英, 汪炳锋, 吴星辉. 循环扰动荷载作用下花岗岩中裂隙萌生扩展过程的颗粒流模拟[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.03.15.003
引用本文: 张杰, 郭奇峰, 蔡美峰, 张英, 汪炳锋, 吴星辉. 循环扰动荷载作用下花岗岩中裂隙萌生扩展过程的颗粒流模拟[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.03.15.003
ZHANG Jie, GUO Qi-feng, CAI Mei-feng, ZHANG Ying, WANG Bing-feng, WU Xing-hui. Particle flow simulation of the crack propagation characteristics of granite under cyclic load[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.03.15.003
Citation: ZHANG Jie, GUO Qi-feng, CAI Mei-feng, ZHANG Ying, WANG Bing-feng, WU Xing-hui. Particle flow simulation of the crack propagation characteristics of granite under cyclic load[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.03.15.003

循环扰动荷载作用下花岗岩中裂隙萌生扩展过程的颗粒流模拟

doi: 10.13374/j.issn2095-9389.2020.03.15.003
基金项目: 中央高校基本科研业务费资助项目(FRF-TP-18-015A3);国家自然科学基金资助项目(51974014,U2034206)
详细信息
    通讯作者:

    E-mail:guoqifeng@ustb.edu.cn

  • 中图分类号: TD315.3

Particle flow simulation of the crack propagation characteristics of granite under cyclic load

More Information
  • 摘要: 从细观角度、采用颗粒离散元法开展了预制裂隙花岗岩循环加卸载的数值模拟试验。首先,使用图像处理技术识别花岗岩中的不同细观组分、结合室内单轴压缩试验结果对细观力学参数进行了标定。然后,通过编制颗粒流代码追踪裂隙的类型和扩展过程,分析岩石破坏过程中裂隙发展的阶段性特征。结果表明:不同倾角裂隙岩石的新生裂隙走向与预制裂隙贯通方向基本一致;根据新生裂隙的优势倾向分组得到裂隙起裂角与预制裂隙倾角的关系:倾角β≤45°时剪切和张拉裂隙的起裂角单调递减,倾角β≥60°时剪切和张拉裂隙的起裂角单调递增;循环扰动荷载增加了裂隙岩体的轴向变形,轴向累积残余应变曲线呈反S形、提高扰动荷载应力上限促使曲线进入加速阶段;试件峰值强度随裂隙倾角增大表现出先减小后增大的趋势,峰值强度为实验室完整岩石单轴抗压强度的63% ~ 89%,反映了较为明显的劣化现象;在循环荷载作用下,剪切裂隙和张拉裂隙增长曲线表现出明显的变化特点,在裂隙不稳定扩展阶段中张拉裂隙数目增长速率显著大于剪切裂隙,对分析岩石变形破坏过程具有一定的参考意义。
  • 图  1  花岗岩图像矿物识别。(a)标准试件;(b)局部放大图

    Figure  1.  Mineral recognition from a granite image: (a) standard test specimen; (b) partial enlarged detail

    图  2  试件应力–应变曲线

    Figure  2.  Stress–strain curves of a specimen

    图  3  裂隙花岗岩试件模型

    Figure  3.  Numerical model of a granite specimen with a single crack

    图  4  裂隙岩石试件走向玫瑰花图。(a)β = 0°;(b)β = 30°;(c)β = 45°;(d)β = 60°;(e)β = 90°

    Figure  4.  Strike rose diagrams of a cracked rock specimen: (a) β = 0°; (b) β = 30°; (c) β = 45°; (d) β = 60°; (e) β = 90°

    图  5  预制裂隙倾角β与起裂角θ的关系

    Figure  5.  Relation between the crack initial angle θ and crack dip β

    图  6  新生裂隙数目与轴向应变的变化情况。(a)β = 0°;(b)β = 30°;(c)β = 45°;(d)β = 60°;(e)β = 90°

    Figure  6.  Number of newly generated cracks and the change in axial strain: (a) β = 0°; (b) β = 30°; (c) β = 45°; (d) β = 60°; (e) β = 90°

    图  7  循环次数与轴向应变关系

    Figure  7.  Relation between the number of cycles and axial strain

    图  8  不同预制裂隙倾角岩石试件的破裂模式。(a)β =0°;(b)β =30°;(c)β =45°;(d)β =60°;(e)β =90°

    Figure  8.  Fracture modes of a rock specimen with different crack angles: (a) β = 0°; (b) β = 30°; (c) β = 45°; (d) β = 60°; (e) β = 90°

    图  9  不同矿物比例的岩石应力–应变曲线和破坏模式

    Figure  9.  Stress–strain curves and failure modes of rocks with different mineral ratios

    表  1  花岗岩细观力学性质参数

    Table  1.   Microscale mechanical parameters of granite

    Mineral componentParticles forming grainsLinear parallel bond model
    Minimum particle radius forming grain, Rmin/mmMaximum to minimum radius ratio, Rmax/RminYoung’s modulus, Ec/GPaRatio of normal to shear stiffness of the particle, kn/ksYoung’s modulus, $ {\bar E_{\rm{c}}} $/GPaRatio of normal to shear stiffness of the parallel bond, ${\bar k_{\rm{n}}} $/$ {\bar k_{\rm{s}}} $Shear bond strength, $ {\tau _{\rm{c}}} $/MPaFriction ratio, $ \bar \varphi $Tensile–shear bond strength ratio, ${\bar \sigma _{\rm{c}}} $/$ {\bar \tau _{\rm{c}}} $
    Feldspar1.21.6645.51.1528.01.651.00.51.0
    Quartz1.21.6633.01.1522.61.681.60.81.0
    Mica1.21.6611.21.155.91.615.30.151.0
    下载: 导出CSV

    表  2  新生裂隙倾向和倾角分布统计

    Table  2.   Statistics of the distribution of tendencies and inclinations for newly generated cracks

    Tendencies and inclinations for preexisting cracksShear cracksTension crack
    Tendency groupingAverage inclination/(°)Percentage/%Tendency groupingAverage inclination/(°)Percentage/%
    90°∠0°151°–160°656.361°–70°778.0
    211°–220°606.3251°–260°628.0
    90°∠30°261°–270°6211.971°–80°6110.5
    241°–250°489.5141°–150°7210.5
    90°∠45°261°–270°5417.471°–80°5218.5
    251°–260°4515.291°–100°6411.1
    90°∠60°261°–270°519.581°–90°6414.3
    251°–260°517.961°–70°6910.7
    90°∠90°261°–270°458.5131°–140°8811.1
    181°–190°436.421°–30°485.6
    下载: 导出CSV

    表  3  峰值强度统计

    Table  3.   Statistics of peak strengths

    Inclination angle of rock specimen, β/(°)Peak strength under cyclic load/MPaPeak strength under cyclic load to the uniaxial strength of the intact rock ratioCycles
    084.40.6721
    3079.30.6324
    4591.30.7324
    6096.70.7724
    901120.8924
    下载: 导出CSV
  • [1] Lajtai E Z, Carter B J, Ayari M L. Criteria for brittle fracture in compression. Eng Fract Mech, 1990, 37(1): 59 doi: 10.1016/0013-7944(90)90331-A
    [2] Yang S Q, Jing H W, Wang S Y. Experimental investigation on the strength, deformability, failure behavior and acoustic emission locations of red sandstone under triaxial compression. Rock Mech Rock Eng, 2012, 45(4): 583 doi: 10.1007/s00603-011-0208-8
    [3] Cao P, Liu T Y, Pu C Z, et al. Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression. Eng Geol, 2015, 187: 113 doi: 10.1016/j.enggeo.2014.12.010
    [4] 陈卫忠, 李术才, 朱维申, 等. 岩石裂纹扩展的实验与数值分析研究. 岩石力学与工程学报, 2003, 22(1):18 doi: 10.3321/j.issn:1000-6915.2003.01.003

    Chen W Z, Li S C, Zhu W S, et al. Experimental and numerical research on crack propagation in rock under compression. Chin J Rock Mech Eng, 2003, 22(1): 18 doi: 10.3321/j.issn:1000-6915.2003.01.003
    [5] 赵海军, Dwayne T, 郭捷, 等. 基于连续-非连续方法的裂隙破坏与相互作用研究. 工程地质学报, 2019, 27(5):933

    Zhao H J, Dwayne T, Guo J, et al. Numerical study on fracture propagation and interaction using continuous-discontinuous failure method. J Eng Geol, 2019, 27(5): 933
    [6] 宋彦琦, 李名, 王晓, 等. 基于高速摄影的双预制裂纹大理岩加卸载试验. 岩石力学与工程学报, 2015, 34(增刊 1):2679

    Song Y Q, Li M, Wang X, et al. Experimental test on marble containing two pre-existing cracks under loading and unloading conditions based on high-speed photography. Chin J Rock Mech Eng, 2015, 34(Suppl 1): 2679
    [7] 郭奇峰, 武旭, 蔡美峰, 等. 预制裂隙花岗岩的强度特征与破坏模式试验. 工程科学学报, 2019, 41(1):43

    Guo Q F, Wu X, Cai M F, et al. Experiment on the strength characteristics and failure modes of granite with pre-existing cracks. Chin J Eng, 2019, 41(1): 43
    [8] Guo Q F, Pan J L, Cai M F, et al. Investigating the effect of rock bridge on the stability of locked section slopes by the direct shear test and acoustic emission technique. Sensors, 2020, 20(3): 638 doi: 10.3390/s20030638
    [9] 唐礼忠, 宋徉霖. 含非共面重叠型微裂隙类岩石试样单轴受压宏细观力学特性颗粒流模拟. 岩石力学与工程学报, 2019, 38(11):2161

    Tang L Z, Song Y L. Particle flow simulation of macro- and meso-mechanical properties of uniaxially compressed rock-like specimens with non-coplanar overlapping flaws. Chin J Rock Mech Eng, 2019, 38(11): 2161
    [10] Martin C D, Chandler N A. The progressive fracture of Lac du Bonnet granite. Int J Rock Mech Min Sci Geomech Abstr, 1994, 31(6): 643 doi: 10.1016/0148-9062(94)90005-1
    [11] Cai M, Kaiser P K, Tasaka Y, et al. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. Int J Rock Mech Min Sci, 2004, 41(5): 833 doi: 10.1016/j.ijrmms.2004.02.001
    [12] 王桂林, 梁再勇, 张亮, 等. Z型裂隙对砂岩强度和破裂行为影响机制研究. 岩土力学, 2018, 39(增刊 2):389

    Wang G L, Liang Z Y, Zhang L, et al. Study of influence mechanism of Z-type fissure on sandstone strength and fracture behavior. Rock Soil Mech, 2018, 39(Suppl 2): 389
    [13] Afolagboye L O, He J M, Wang S J. Experimental study on cracking behavior of moulded gypsum containing two non-parallel overlapping flaws under uniaxial compression. Acta Mech Sin, 2017, 33(2): 394 doi: 10.1007/s10409-016-0624-9
    [14] Bobet A, Einstein H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression. Int J Rock Mech Min Sci, 1998, 35(7): 863 doi: 10.1016/S0148-9062(98)00005-9
    [15] Bagde M N, Petroš V. Fatigue and dynamic energy behaviour of rock subjected to cyclical loading. Int J Rock Mech Min Sci, 2009, 46(1): 200 doi: 10.1016/j.ijrmms.2008.05.002
    [16] Chen Y Q, Watanabe K, Kusuda H, et al. Crack growth in Westerly granite during a cyclic loading test. Eng Geol, 2011, 117(3-4): 189 doi: 10.1016/j.enggeo.2010.10.017
    [17] Ghamgosar M, Erarslan N, Williams D J. Experimental investigation of fracture process zone in rocks damaged under cyclic loadings. Exp Mech, 2017, 57(1): 97 doi: 10.1007/s11340-016-0216-4
    [18] 祝艳波, 黄兴, 郭杰, 等. 循环荷载作用下石膏质岩的疲劳特性试验研究. 岩石力学与工程学报, 2017, 36(4):940

    Zhu Y B, Huang X, Guo J, et al. Experimental study of fatigue characteristics of gypsum rock under cyclic loading. Chin J Rock Mech Eng, 2017, 36(4): 940
    [19] 何明明, 陈蕴生, 李宁, 等. 单轴循环荷载作用下砂岩变形特性与能量特征. 煤炭学报, 2015, 40(8):1805

    He M M, Chen Y S, Li N, et al. Deformation and energy characteristics of sandstone subjected to uniaxial cyclic loading. J China Coal Soc, 2015, 40(8): 1805
    [20] 任松, 王小书, 高思娴, 等. 基于NMR和声发射的砂岩疲劳损伤试验研究. 北京理工大学学报, 2019, 39(8):792

    Ren S, Wang X S, Gao S X, et al. Experimental study on fatigue damage of sandstone based on NMR and acoustic emission. Trans Beijing Inst Technol, 2019, 39(8): 792
    [21] Mahabadi O K, Randall N X, Zong Z, et al. A novel approach for micro-scale characterization and modeling of geomaterials incorporating actual material heterogeneity. Geophys Res Lett, 2012, 39(1): L01303
    [22] Ündül Ö, Amann F, Aysal N, et al. Micro-textural effects on crack initiation and crack propagation of andesitic rocks. Eng Geol, 2015, 193: 267 doi: 10.1016/j.enggeo.2015.04.024
    [23] Ghasemi S, Khamehchiyan M, Taheri A, et al. Crack evolution in damage stress thresholds in different minerals of granite rock. Rock Mech Rock Eng, 2020, 53(3): 1163 doi: 10.1007/s00603-019-01964-9
    [24] 徐金明, 黄大勇, 朱洪昌. 基于细观组分实际分布的花岗岩宏细观参数关系. 岩石力学与工程学报, 2016, 35(增刊 1):2635

    Xu J M, Huang D Y, Zhu H C. Relations between macro-and meso-scopic mechanical parameters of granite based on actual distributions of mesocompositions. Chin J Rock Mech Eng, 2016, 35(Suppl 1): 2635
    [25] 邓树新, 郑永来, 冯利坡, 等. 试验设计法在硬岩PFC3D模型细观参数标定中的应用. 岩土工程学报, 2019, 41(4):655

    Deng S X, Zheng Y L, Feng L P, et al. Application of design of experiments in microscopic parameter calibration for hard rocks of PFC3D model. Chin J Geotech Eng, 2019, 41(4): 655
    [26] Shi C, Yang W K, Yang J X, et al. Calibration of micro-scaled mechanical parameters of granite based on a bonded-particle model with 2D particle flow code. Granular Matter, 2019, 21(2): 38 doi: 10.1007/s10035-019-0889-3
    [27] 陆菜平, 窦林名, 曹安业, 等. 深部高应力集中区域矿震活动规律研究. 岩石力学与工程学报, 2008, 27(11):2303

    Lu C P, Dou L M, Cao A Y, et al. Research on micro seismic activity rules in deep high-stress concentration district. Chin J Rock Mech Eng, 2008, 27(11): 2303
    [28] 席道瑛, 刘小燕, 张程远. 由宏观滞回曲线分析岩石的微细观损伤. 岩石力学与工程学报, 2003, 22(2):182 doi: 10.3321/j.issn:1000-6915.2003.02.003

    Xi D Y, Liu X Y, Zhang C Y. Analysis of micro and meso-damage of rock by macro-hysteresis curve. Chin J Rock Mech Eng, 2003, 22(2): 182 doi: 10.3321/j.issn:1000-6915.2003.02.003
    [29] 郭奇峰, 武旭, 蔡美峰, 等. 预制裂隙花岗岩的裂纹起裂机理试验研究. 煤炭学报, 2019, 44(增刊 2):476

    Guo Q F, Wu X, Cai M F, et al. Crack initiation mechanism of pre-existing cracked granite. J China Coal Soc, 2019, 44(Suppl 2): 476
    [30] 朱维申, 陈卫忠, 申晋. 雁形裂纹扩展的模型试验及断裂力学机制研究. 固体力学学报, 1998, 19(4):355

    Zhu W S, Chen W Z, Shen J. Simulation experiment and fracture mechanism study on propagation of echelon pattern cracks. Chin J Solid Mech, 1998, 19(4): 355
    [31] 李银平, 王元汉, 陈龙珠, 等. 含预制裂纹大理岩的压剪试验分析. 岩土工程学报, 2004, 26(1):120 doi: 10.3321/j.issn:1000-4548.2004.01.023

    Li Y P, Wang Y H, Chen L Z, et al. Experimental research on pre-existing cracks in marble under compression. Chin J Geotech Eng, 2004, 26(1): 120 doi: 10.3321/j.issn:1000-4548.2004.01.023
    [32] 高美奔, 李天斌, 孟陆波, 等. 岩石变形破坏各阶段强度特征值确定方法. 岩石力学与工程学报, 2016, 35(增刊 2):3577

    Gao M B, Li T B, Meng L B, et al. The method to identify characteristic stresses of rock in different stages during failure process. Chin J Rock Mech Eng, 2016, 35(Suppl 2): 3577
  • 加载中
计量
  • 文章访问数:  1032
  • HTML全文浏览量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-15
  • 网络出版日期:  2020-05-25

目录

    /

    返回文章
    返回