• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电化学修复后钢筋混凝土黏结性能演变规律

樊玮洁 吴云涛 毛江鸿 金伟良 陈锦森

樊玮洁, 吴云涛, 毛江鸿, 金伟良, 陈锦森. 电化学修复后钢筋混凝土黏结性能演变规律[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.04.01.004
引用本文: 樊玮洁, 吴云涛, 毛江鸿, 金伟良, 陈锦森. 电化学修复后钢筋混凝土黏结性能演变规律[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.04.01.004
FAN Wei-jie, WU Yun-tao, MAO Jiang-hong, JIN Wei-liang, CHEN Jin-sen. Evolutionary regularity of bond property for reinforced concrete after electrochemical rehabilitation[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.04.01.004
Citation: FAN Wei-jie, WU Yun-tao, MAO Jiang-hong, JIN Wei-liang, CHEN Jin-sen. Evolutionary regularity of bond property for reinforced concrete after electrochemical rehabilitation[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.04.01.004

电化学修复后钢筋混凝土黏结性能演变规律

doi: 10.13374/j.issn2095-9389.2020.04.01.004
基金项目: 国家自然科学基金重点资助项目(51638013);国家自然科学基金重点国际合作资助项目(51820105012);国家自然科学基金资助项目(51878610);浙江省自然科学基金资助项目(LQ19E080012);宁波市自然科学基金资助项目(2018A610359)
详细信息
    通讯作者:

    E-mail:jhmao@nit.zju.edu.cn

  • 中图分类号: TU375

Evolutionary regularity of bond property for reinforced concrete after electrochemical rehabilitation

More Information
  • 摘要: 针对电化学修复技术导致修复后结构内钢筋混凝土黏结性能退化问题,通过中心拉拔实验获取电化学修复后钢筋混凝土黏结滑移曲线,研究电化学修复参数(电流密度和通电时间)对钢筋混凝土黏结性能的影响规律,通过实验结果进行模型参数分析,建立基于电流密度和通电时间两个控制变量的黏结强度劣化模型。研究结果表明:电通量较小的情况下,钢筋混凝土黏结性能损失较小;不控制通电参数的电化学修复技术导致黏结强度下降明显,采用5 A·m–2的电流开展28 d的恒电流通电,试件的最大黏结力损失量高达56.9%;本文提出的劣化模型可以定量表征电化学修复后试件黏结强度折减情况,模型的数值模拟结果与本文及其他文献的实验结果均有较好的一致性,相关系数分别为0.9606和0.9745。
  • 图  1  拉拔试件尺寸(单位:mm)

    Figure  1.  Specimen size (Unit: mm)

    图  2  通电装置示意图

    Figure  2.  Schematic of experimental setup for electrochemical rehabilitation

    图  3  拉拔装置及实验加载图

    Figure  3.  Pull-out test device and test loading

    图  4  不同电流密度下的黏结–滑移曲线。(a)1 A·m–2;(b)3 A·m–2;(c)5 A·m–2

    Figure  4.  Bond force–slip curves under different current densities: (a) 1 A·m−2; (b) 3 A·m−2; (c) 5 A·m−2

    图  5  不同电流密度下的最大黏结力

    Figure  5.  Maximum bond force under different currents densities

    图  6  不同电流密度下最大黏结力损失量

    Figure  6.  Maximum bond force loss amount under different current densities

    图  7  不同通电时间下的最大黏结力

    Figure  7.  Maximum bond force under different conduction times

    图  8  不同通电时间下最大黏结力损失量

    Figure  8.  Maximum bond force loss amount under different conduction times

    图  9  三维折减模型与本文实验值

    Figure  9.  Three-dimensional deterioration mode and experimental data of this paper

    图  10  三维折减模型与文献[2527]的实验值

    Figure  10.  Three-dimensional deterioration mode and experimental data of Ref.[2527]

    图  11  折减模型与实验值对比

    Figure  11.  Comparison between deterioration mode and experimental data

    表  1  C30混凝土配合比

    Table  1.   Mix proportion of C30 concrete specimen kg·m–3

    WaterCementSandGravel
    2023827511157
    下载: 导出CSV

    表  2  实验试件分组情况表

    Table  2.   Electrochemical parameters design

    SampleCurrent density / (A·m–2)Conduction time / d
    I1-D717
    I1-D15115
    I1-D28128
    I3-D737
    I3-D15315
    I3-D28328
    I5-D757
    I5-D15515
    I5-D28528
    下载: 导出CSV

    表  3  拉拔实验最大黏结力

    Table  3.   Maximum force of pull-out test

    SampleMaximum force/kNAverage force/kNAverage
    bond stress/
    MPa
    Average reduced value
    Sample 1Sample 2Sample 3
    I0-D044.3454.7251.8050.2916.341.000
    I1-D750.1650.5849.7650.1716.300.998
    I1-D1549.2149.8649.5449.5416.100.985
    I1-D2846.8145.6950.4947.6615.490.948
    I3-D749.0649.6851.7450.1616.040.997
    I3-D1542.4148.5045.8345.5812.450.906
    I3-D2842.1542.9144.8643.3114.070.861
    I5-D747.1849.2051.3449.2416.000.979
    I5-D1535.1139.0642.5438.9012.640.774
    I5-D2817.7127.8019.5721.697.700.431
    下载: 导出CSV

    表  4  拟合值与实验值对比

    Table  4.   Comparison between analysis results and experimental results

    ReferenceSamplePractical reduced valueFormula reduced valueReferenceSamplePractical reduced valueFormula reduced value
    This paperI0-D01.0001.000 Lin et al.
    (25 ℃)[25]
    I1-D280.9490.947
    I1-D70.9980.994I2-D280.8760.905
    I1-D150.9850.979I3-D280.8320.820
    I1-D280.9480.947Hao et al.
    (Nature corrosion)[26]
    I1-D280.9500.947
    I3-D70.9970.981I2-D280.8800.905
    I3-D150.9060.929I3-D280.8700.820
    I3-D280.8610.820Liu et al.[27]I1-D280.9480.947
    I5-D70.9790.933I1-D420.9220.907
    I5-D150.7740.778I2-D280.8790.905
    I5-D280.4310.462I2-D420.8210.831
    I3-D280.8100.820
    I3-D420.7550.682
    下载: 导出CSV
  • [1] 彭怀德, 刘敦文, 戴兵, 等. 锈蚀植筋下新老混凝土面压剪试验研究. 工程科学学报, 2018, 40(1):23

    Peng H D, Liu D W, Dai B, et al. Experimental research on load-shear performance of interface between new and old concrete with corroded planting bar. Chin J Eng, 2018, 40(1): 23
    [2] 施锦杰, 孙伟, 耿国庆. 恒电流脉冲法研究钢筋在模拟混凝土孔溶液中的腐蚀行为. 北京科技大学学报, 2011, 33(6):727

    Shi J J, Sun W, Geng G Q. Steel corrosion in simulated concrete pore solutions using a galvanostatic pulse method. J Univ Sci Technol Beijing, 2011, 33(6): 727
    [3] Vera R, Villarroel M, Carvajal A M, et al. Corrosion products of reinforcement in concrete in marine and industrial environments. Mater Chem Phys, 2009, 114(1): 467 doi: 10.1016/j.matchemphys.2008.09.063
    [4] 施锦杰, 孙伟, 耿国庆, 等. 电化学方法研究混凝土模拟液中细晶粒钢的耐蚀性. 北京科技大学学报, 2011, 33(12):1471

    Shi J J, Sun W, Geng G Q, et al. Corrosion resistance of fine-grained rebar in simulated concrete pore solutions by means of electrochemical methods. J Univ Sci Technol Beijing, 2011, 33(12): 1471
    [5] 朱雅仙, 朱锡昶, 罗德宽, 等. 电化学脱盐对钢筋混凝土性能的影响. 水运工程, 2002(5):8 doi: 10.3969/j.issn.1002-4972.2002.05.003

    Zhu Y X, Zhu X C, Luo D K, et al. Influences of electrochemical desalination on the behavior of reinforced concrete. Port Waterway Eng, 2002(5): 8 doi: 10.3969/j.issn.1002-4972.2002.05.003
    [6] 徐建芝, 丁铸, 邢峰. 钢筋混凝土电化学脱盐修复技术研究现状. 混凝土, 2008(9):22 doi: 10.3969/j.issn.1002-3550.2008.09.008

    Xu J Z, Ding Z, Xing F. Research status of electrochemical chloride extraction (ECE) on steel reinforced concrete. Concrete, 2008(9): 22 doi: 10.3969/j.issn.1002-3550.2008.09.008
    [7] 郭育霞. 钢筋混凝土电化学除氯及除氯后性能研究[学位论文]. 大连: 大连理工大学, 2010

    Guo Y X. Study on Electrochemical Chloride Extraction and Post Performance of Reinforced Concrete [Dissertation]. Dalian: Dalian University of Technology, 2010
    [8] Glass G K, Buenfeld N R. The inhibitive effects of electrochemical treatment applied to steel in concrete. Corros Sci, 2000, 42(6): 923 doi: 10.1016/S0010-938X(99)00121-3
    [9] 刘玉, 杜荣归, 林昌健. 钢筋混凝土结构的电化学处理及其研究进展. 腐蚀科学及防护技术, 2008, 20(2):125

    Liu Y, Du R G, Lin C J. Progress in electrochemical treatment applied to reinforced concrete. Corros Sci Prot Technol, 2008, 20(2): 125
    [10] 高小建, 郑秀梅, 杨英姿. 电化学参数对混凝土除氯效率的影响. 沈阳工业大学学报, 2010, 32(5):579

    Gao X J, Zheng X M, Yang Y Z. Influence of electrochemical parameters on chloride extraction efficiency. J Shenyang Univ Technol, 2010, 32(5): 579
    [11] 祝频, 郑靓, 王新祥, 等. 电化学除盐工艺参数优化及工程应用探索. 混凝土与水泥制品, 2010(2):4 doi: 10.3969/j.issn.1000-4637.2010.02.002

    Zhu P, Zheng L, Wang X X, et al. Parameters optimization of electrochemical chloride extraction and exploratory research on its engineering application. China Concr Cem Prod, 2010(2): 4 doi: 10.3969/j.issn.1000-4637.2010.02.002
    [12] Rodrigo de Almeida Souza L, de Medeiros M H F, Pereira E, et al. Electrochemical chloride extraction: Efficiency and impact on concrete containing 1% of NaCl. Constr Build Mater, 2017, 145: 435 doi: 10.1016/j.conbuildmat.2017.04.010
    [13] 郭育霞, 贡金鑫. 钢筋混凝土电化学除氯的试验研究. 太原理工大学学报, 2011, 42(6):588

    Guo Y X, Gong J X. Study on electrochemical chloride extraction of reinforced concrete. J Taiyuan Univ Technol, 2011, 42(6): 588
    [14] Nguyen T H, Nguyen T A, Le V K, et al. Effect of electrochemical chloride extraction treatment on the corrosion of steel rebar in chloride contaminated mortar. Anti-Corros Methods Mater, 2016, 63(5): 377 doi: 10.1108/ACMM-12-2014-1473
    [15] 雷智昊, 屈锋, 孙浩然, 等. 钢筋混凝土结构电化学除氯研究. 硅酸盐通报, 2018, 37(9):2834

    Lei Z H, Qu F, Sun H R, et al. Research on electrochemical chloride extraction of reinforced concrete structures. Bull Chin Ceram Soc, 2018, 37(9): 2834
    [16] Ihekwaba N M, Hope B B, Hansson C M. Pull-out and bond degradation of steel rebars in ECE concrete. Cem Concr Res, 1996, 26(2): 267 doi: 10.1016/0008-8846(95)00210-3
    [17] 郑秀梅, 李广军, 支秀兰. 电化学除盐对钢筋与混凝土间力的影响. 混凝土, 2011(6):46

    Zheng X M, Li G J, Zhi X L. Effect of electrochemical chloride extraction on adhesion strength between steel bars and concrete. Concrete, 2011(6): 46
    [18] Chang J J. Bond degradation due to the desalination process. Constr Build Mater, 2003, 17(4): 281 doi: 10.1016/S0950-0618(02)00113-7
    [19] Buenfeld N R, Broomfield J P. Influence of electrochemical chloride extraction on the bond between steel and concrete. Mag Concr Res, 2000, 52(2): 79 doi: 10.1680/macr.2000.52.2.79
    [20] Orellan J C, Escadeillas E, Arliguie G. Electrochemical chloride extraction: efficiency and side effects. Cem Concr Res, 2004, 34(2): 227 doi: 10.1016/j.cemconres.2003.07.001
    [21] 梁岩, 罗小勇, 肖小琼, 等. 锈蚀钢筋混凝土黏结滑移性能试验研究. 工业建筑, 2012, 42(10):95

    Liang Y, Luo X Y, Xiao X Q, et al. Experimental study on bond-slip performance of corroded reinforced concrete. Ind Constr, 2012, 42(10): 95
    [22] 袁广林, 郭操, 吕志涛. 高温下钢筋混凝土黏结性能的试验与分析. 工业建筑, 2006, 36(2):57 doi: 10.3321/j.issn:1000-8993.2006.02.017

    Yuan G L, Guo C, Lv Z T. Experimental study on bond property of reinforced concrete at high temperatures. Ind Constr, 2006, 36(2): 57 doi: 10.3321/j.issn:1000-8993.2006.02.017
    [23] 周子健, 霍静思, 金宝. 高温后钢筋与混凝土黏结性能试验与损伤机理分析. 实验力学, 2018, 33(2):209 doi: 10.7520/1001-4888-16-283

    Zhou Z J, Huo J S, Jin B. Experimental study on bond behavior and damage mechanism analysis of reinforcing steel to concrete interface after elevated temperature. J Exp Mech, 2018, 33(2): 209 doi: 10.7520/1001-4888-16-283
    [24] 王晓璐, 查晓雄, 张旭琛. 高温下FRP筋与混凝土的黏结性能. 哈尔滨工业大学报, 2013, 45(6):8

    Wang X L, Zha X X, Zhang X C. Bond behavior of FRP rebar and concrete at elevated temperature. J Harbin Inst Technol, 2013, 45(6): 8
    [25] Lin H, Li Y, Yaqiang Li Y Q. A study on the deterioration of interfacial bonding properties of chloride-contaminated reinforced concrete after electrochemical chloride extraction treatment. Constr Build Mater, 2019, 197: 228 doi: 10.1016/j.conbuildmat.2018.11.196
    [26] Hao T Y, Lin H, Li Y, et al. Effects of electrochemical chloride extraction on the bonding properties of corroded reinforced concrete by the anode of magnesium phosphate cement bonding carbon fiber-reinforced plastics (CFRP). IOP Conf Ser Mater Sci Eng, 2019, 544: 012031 doi: 10.1088/1757-899X/544/1/012031
    [27] 刘斌. 砼结构电化学除盐离子分布及黏结性能研究[学位论文]. 烟台: 烟台大学, 2008

    Liu B. Study on chloride distribution and bonding properties of concrete structures after Electrochemical chloride extraction [Dissertation]. Yantai: Yantai University, 2008
  • 加载中
计量
  • 文章访问数:  750
  • HTML全文浏览量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-01
  • 网络出版日期:  2020-07-23

目录

    /

    返回文章
    返回