王举金, 张立峰, 陈威, 王胜东, 张月鑫, 任英. 卷渣类夹杂物在结晶器钢液中成分转变的动力学模型[J]. 工程科学学报, 2021, 43(6): 786-796. DOI: 10.13374/j.issn2095-9389.2020.04.13.003
引用本文: 王举金, 张立峰, 陈威, 王胜东, 张月鑫, 任英. 卷渣类夹杂物在结晶器钢液中成分转变的动力学模型[J]. 工程科学学报, 2021, 43(6): 786-796. DOI: 10.13374/j.issn2095-9389.2020.04.13.003
WANG Ju-jin, ZHANG Li-feng, CHEN Wei, WANG Sheng-dong, ZHANG Yue-xin, REN Ying. Kinetic model of the composition transformation of slag inclusions in molten steel in continuous casting mold[J]. Chinese Journal of Engineering, 2021, 43(6): 786-796. DOI: 10.13374/j.issn2095-9389.2020.04.13.003
Citation: WANG Ju-jin, ZHANG Li-feng, CHEN Wei, WANG Sheng-dong, ZHANG Yue-xin, REN Ying. Kinetic model of the composition transformation of slag inclusions in molten steel in continuous casting mold[J]. Chinese Journal of Engineering, 2021, 43(6): 786-796. DOI: 10.13374/j.issn2095-9389.2020.04.13.003

卷渣类夹杂物在结晶器钢液中成分转变的动力学模型

Kinetic model of the composition transformation of slag inclusions in molten steel in continuous casting mold

  • 摘要: 国内某厂镀锡板缺陷处夹杂物主要来自结晶器保护渣的卷入,但其成分与结晶器保护渣有明显差别。为了进一步研究这种成分差别的原因,建立了耦合热力学平衡和动力学扩散的结晶器卷渣类夹杂物的成分转变动力学模型,明确了卷渣类夹杂物的尺寸和密度对其成分转变的影响规律,并通过对结晶器和液相穴内的钢液流动和夹杂物运动的数值模拟研究了夹杂物在钢液中的停留时间。结果表明:结晶器保护渣卷入钢液后与钢液不断发生反应,成分会发生明显改变。卷渣类夹杂物转变为缺陷处夹杂物所需要的时间与夹杂物尺寸以及夹杂物密度有关,夹杂物的尺寸和密度越大,转变为缺陷处夹杂物成分所需的时间越长。卷渣类夹杂物转变为缺陷处夹杂物所需时间与夹杂物尺寸呈幂函数关系,与夹杂物密度呈二次函数关系。夹杂物在钢液中的平均停留时间随夹杂物直径的增大而减小,并且随着拉速的增大而减小。小尺寸夹杂物一旦被卷入钢液中,将有充足的时间转变为缺陷处的成分。大尺寸夹杂物在钢液中的平均停留时间小于成分转变时间,但最大停留时间远大于成分转变所需时间,表明部分大尺寸夹杂物依然具有充足的停留时间转变为缺陷处的成分。

     

    Abstract: The inclusions at the defects of tinplate originated from the entrainment of the mold flux, but their composition differed significantly from that of the mold flux. To investigate this difference, a kinetic model was established of the transformation of the composition of the slag inclusions, coupled with the thermodynamic equilibrium and kinetic diffusion. The influences of the size and density of slag inclusions on the variation of their composition were also evaluated. The residence times of the inclusions in the molten steel were studied by simulating the flow of molten steel and the movement of the inclusions in the mold and steel cavity. The results show that after entrainment into the molten steel, the mold flux reacts continuously with the molten steel, which results in a significant change in its composition. The time required for the transformation was related to the diameter and density of inclusions. The larger the diameter and the bigger the density, the longer the time was required for the transformation. The time required for the transformation had a root relationship with the diameter of inclusions, and had a quadratic function with density of the inclusions. The average residence time of the inclusions in the molten steel decreased with increases in the diameter of the inclusions and the pulling speed. There would be enough time for the small inclusions to transform into the compositions of defects once they are entrained into the molten steel. The average residence time of the large inclusions is less than the time required for the transformation, while the maximum residence time is much longer than the time required for the transformation, which indicates that some inclusions with larger size still have enough residence time to transform from the initial composition to the composition of defects.

     

/

返回文章
返回