• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高压直流干扰大幅值管地电位产生原因及影响因素分析

袁洵 杜艳霞 梁毅 秦润之

袁洵, 杜艳霞, 梁毅, 秦润之. 高压直流干扰大幅值管地电位产生原因及影响因素分析[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.06.02.002
引用本文: 袁洵, 杜艳霞, 梁毅, 秦润之. 高压直流干扰大幅值管地电位产生原因及影响因素分析[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.06.02.002
YUAN Xun, DU Yan-xia, LIANG Yi, QIN Run-zhi. Causes of high amplitude of pipe-to-soil potential under HVDC interference and influencing factors[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.06.02.002
Citation: YUAN Xun, DU Yan-xia, LIANG Yi, QIN Run-zhi. Causes of high amplitude of pipe-to-soil potential under HVDC interference and influencing factors[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.06.02.002

高压直流干扰大幅值管地电位产生原因及影响因素分析

doi: 10.13374/j.issn2095-9389.2020.06.02.002
基金项目: 国家重点研发计划资助项目(2016YFC0802101)
详细信息
    通讯作者:

    E-mail:duyanxia@ustb.edu.cn

  • 中图分类号: TG142.71

Causes of high amplitude of pipe-to-soil potential under HVDC interference and influencing factors

More Information
  • 摘要: 基于实际的工程参数建立了高压直流干扰电场计算模型,利用数值模拟计算技术对高压直流干扰大幅值管地电位的产生原因进行探究。考察接地极与管道之间的间距、管道防腐层类型、管道长度及土壤结构等因素对高压直流干扰下管地电位的影响规律,得到高压直流干扰大幅值管地电位是在接地极与管道距离较近、防腐层的绝缘性能较高、管道长度较大及上低下高的土壤电阻率分层结构共同作用下产生的。

     

  • 图  1  接地极与管道相对位置示意图

    Figure  1.  Diagram of relative position between the grounding electrode and pipeline

    图  2  模型计算结果与现场数据匹配图

    Figure  2.  Matching diagram of model calculation results and field data

    图  3  高压直流干扰中EsoilEpipeEpipe-to-soil三种计算电位示意图

    Figure  3.  Diagram of the three calculated potentials of Esoil, Epipe, and Epipe-to-soil under HVDC interference

    图  4  基础模型中管道沿线两种电位计算结果。(a)Esoil;(b)Epipe

    Figure  4.  Calculation results of two potentials along the pipeline in the validation model: (a) Esoil; (b) Epipe

    图  5  接地极周围土壤电位沿线分布图

    Figure  5.  Distribution of soil potential around the grounding electrode

    图  6  高压直流干扰时不同垂直间距下管道沿线三种电位计算结果。(a)Esoil;(b)Epipe;(c)Epipe-to-soil

    Figure  6.  Calculation results of three types of potential along the pipeline under different vertical spacings under HVDC interference: (a) Esoil; (b) Epipe; (c) Epipe-to-soil

    图  7  高压直流干扰时不同防腐层下管道沿线三种电位计算结果。(a)Esoil;(b)Epipe;(c)Epipe-to-soil

    Figure  7.  Calculation results of three types of potential along the pipeline under different anticorrosive coatings under HVDC interference: (a) Esoil; (b) Epipe; (c) Epipe-to-soil

    图  8  高压直流干扰时不同管道长度下管道沿线三种电位计算结果。(a)Esoil;(b)Epipe;(c)Epipe-to-soil

    Figure  8.  Calculation results of three types of potential along the pipeline under different pipeline lengths under HVDC interference: (a) Esoil; (b) Epipe; (c) Epipe-to-soil

    图  9  高压直流干扰时不同底层土壤电阻率下管道沿线三种电位计算结果。(a)Esoil;(b)Epipe;(c)Epipe-to-soil

    Figure  9.  Calculation results of three potentials along the pipeline under different bottom soil resistivities under HVDC interference: (a) Esoil; (b) Epipe; (c) Epipe-to-soil

    图  10  不同底层与表层土壤电阻率之比下管道中心处EsoilEpipeEpipe-to-soil分布图

    Figure  10.  Distribution of Esoil, Epipe, and Epipe-to-soil in the center of the pipeline under the ratio of soil resistivity of different bottom and surface layers

    表  1  管道参数

    Table  1.   Pipe parameters

    ParametersOuter radius
    of pipe /
    mm
    Wall thickness /
    mm
    Depth /
    m
    Vertical distance between the pipeline and grounding electrode / kmResistivity of anticorrosive coating / (Ω·m2)Pipe length /
    km
    Basic model4005027105185
    Vertical distance between the pipeline and grounding electrode4005021/3/5/10105100
    Pipeline anticorrosive coating40050250/104/105100
    Pipe length40050251051/5/10/30/50/100
    Soil structure4005025105100
    下载: 导出CSV

    表  2  高压直流接地极参数

    Table  2.   Parameters of high-voltage direct current (HVDC) grounding electrode

    Current in monopolar
    mode / A
    StructureRadius of outer
    ring / m
    Radius of inner
    ring / m
    Depth /
    m
    3200Dual-loop structure3152403.5
    下载: 导出CSV

    表  3  土壤结构参数

    Table  3.   Soil structure parameters

    LayersThickness/mResistivity/(Ω·m)
    First layer2.525
    Second layer8.160.5
    Third layer790
    下载: 导出CSV

    表  4  土壤结构计算的分层情况

    Table  4.   Layering of the soil structure calculation

    No.First layer soil
    resistivity/
    (Ω·m)
    Second layer soil
    resistivity/
    (Ω·m)
    Third layer soil
    resistivity/
    (Ω·m)
    Ratio of bottom
    to topsoil
    resistivity
    12560.550.2:1
    22560.512.50.5:1
    32560.5251:1
    42560.5502:1
    52560.51004:1
    62560.530012:1
    72560.580032:1
    82560.5150060:1
    92560.53000120:1
    下载: 导出CSV
  • [1] Zhao W J. HVDC Engineering Technology. Beijing: China Electric Power Press, 2004

    赵畹君. 高压直流输电工程技术. 北京: 中国电力出版社, 2004
    [2] Liao M F, Zhang X L, Xing X Y, et al. Research status and development trend of grounding current effect of UHVDC grounding electrode on corrosion of the metal pipelines. High Voltage Apparatus, 2018, 54(7): 44

    廖敏夫, 张晓莉, 邢小羽, 等. 特高压直流接地极入地电流对金属管道腐蚀研究现状与发展趋势. 高压电器, 2018, 54(7):44
    [3] Cao G F, Gu Q L, Jiang Y T, et al. Current interference of HVDC ground electrode to buried pipelines and its personal safety distance. Nat Gas Ind B, 2019, 6(5): 427 doi: 10.1016/j.ngib.2019.03.001
    [4] Zhou Y, Jiang Z T, Ma X M, et al. Case analysis on corrosion and protection of onshore oil and gas pipeline interfered by HVDC earth electrode. J Saf Sci Technol, 2019, 15(7): 156

    周毅, 姜子涛, 马学民, 等. 陆上油气管道受高压直流接地极干扰的腐蚀与防护实例分析. 中国安全生产科学技术, 2019, 15(7):156
    [5] Wang Z G, Wang W J, Wang F Q, et al. Research on the corrosion effect of the UHVDC ground electrode current on the metal pipelines // IEEE International Conference on Power and Renewable Energy. Shanghai, 2016: 48
    [6] Bi W X, Chen H Y, Li Z J, et al. HVDC interference to buried pipeline: numerical modeling and continuous P/S potential monitoring // CORROSION 2016. Vancouver, 2016: NACE-2016-7714
    [7] Jiang Z T, Cao G F, Ge C G, et al. Study on the mechanism and influencing factors of HVDC interference // CORROSION 2017. New Orleans, 2017: NACE-2017-9293
    [8] Li X Y. HVDC System. Beijing: Science and Technology Press, 2010

    李兴源. 高压直流输电系统. 北京: 科学技术出版社, 2010
    [9] Li Z J. Field test and analysis of interference of high or ultra high voltage direct current transmission system to underground steel pipeline. Corros Prot, 2017, 38(2): 142 doi: 10.11973/fsyfh-201702012

    李振军. 高压/特高压直流输电系统对埋地钢质管道干扰的现场测试与分析. 腐蚀与防护, 2017, 38(2):142 doi: 10.11973/fsyfh-201702012
    [10] Qin R Z, Du Y X, Jiang Z T, et al. Research status of interference of HVDC transmission system to buried metal pipeline. Corros Sci Prot Technol, 2016, 28(3): 263

    秦润之, 杜艳霞, 姜子涛, 等. 高压直流输电系统对埋地金属管道的干扰研究现状. 腐蚀科学与防护技术, 2016, 28(3):263
    [11] Wu J W, Song P. Influence of the high voltage ground current on buried pipeline’s potential. J Electr Eng, 2017, 5(2): 196

    吴江伟, 宋鹏. 高压入地电流对埋地管道电位的影响. 电气工程, 2017, 5(2):196
    [12] Li Z L. Interference and protection on buried pipeline of high voltage direct current grounding electrode. Pipeline Technol Equip, 2017(3): 39 doi: 10.3969/j.issn.1004-9614.2017.03.013

    李兆玲. 高压直流接地极对埋地管道的干扰与防护. 管道技术与设备, 2017(3):39 doi: 10.3969/j.issn.1004-9614.2017.03.013
    [13] Gong Y, Xue C L, Yuan Z L, et al. Advanced analysis of HVDC electrodes interference on neighboring pipelines. J Power Energy Eng, 2015, 3: 332 doi: 10.4236/jpee.2015.34045
    [14] Qin R Z, Du Y X, Jiang Z T, et al. Corrosion behavior of X80 pipe steel under HVDC interference in sandy soil. Metals, 2018, 8(10): 809 doi: 10.3390/met8100809
    [15] Qin R Z, Du Y X, Xu Z C, et al. Anodic polarization behavior of X80 steel in Na2SO4 solution under high potential and current density conditions. Materials, 2019, 12(3): 394 doi: 10.3390/ma12030394
    [16] Ying B. The influence of HVDC grounding electrode on the safe operation of long-distance pipeline. Oil-Gasfield Surf Eng, 2014, 33(7): 23 doi: 10.3969/j.issn.1006-6896.2014.7.015

    应斌. 高压直流输电系统接地极对长输管道安全运行的影响. 油气田地面工程, 2014, 33(7):23 doi: 10.3969/j.issn.1006-6896.2014.7.015
    [17] Tan C B, Xu G, Xu M Z, et al. Effect of monopolar earth-return operation of grounding electrode on natural gas pipelines. Oil Gas Storage Transp, 2018, 37(6): 670

    谭春波, 许罡, 许明忠, 等. 接地极单极大地回路电流运行对天然气管道的影响. 油气储运, 2018, 37(6):670
    [18] Sun J G, Cao G F, Han C C, et al. Influence of HVDC transmission system ground electrode on West-East Gas Pipeline. Corros Prot, 2017, 38(8): 631 doi: 10.11973/fsyfh-201708012

    孙建桄, 曹国飞, 韩昌柴, 等. 高压直流输电系统接地极对西气东输管道的影响. 腐蚀与防护, 2017, 38(8):631 doi: 10.11973/fsyfh-201708012
    [19] Zha X T, Zhang J W, Chen S L, et al. Corrosion behavior of carbon steel in interference of stray current and cathodic protection. Surf Technol, 2015, 44(12): 12

    查鑫堂, 张建文, 陈胜利, 等. 杂散电流干扰和阴极保护作用下碳钢腐蚀规律研究. 表面技术, 2015, 44(12):12
    [20] Nicholson P. High voltage direct current interference with underground/underwater pipelines // Corrosion 2010. San Antonio, 2010: NACE-2010-10102
    [21] Fowles D T. Effects of HVDC on cast-iron pipe systems. J AWWA, 1971, 63(4): 233 doi: 10.1002/j.1551-8833.1971.tb04072.x
    [22] Qin R Z, Du Y X, Peng G Z, et al. High voltage direct current interference on buried pipelines: case study and mitigation design // CORROSION 2017. New Orleans, 2017: NACE-2017-9049
    [23] Qing P. Research on Influence of HVDC Ground Electrode Current on High-speed Railway Traction Net [Dissertation]. Beijing: North China Electric Power University, 2016

    青攀. 高压直流接地极电流对高铁牵引网的影响硏究[学位论文]. 北京: 华北电力大学, 2016
    [24] Nejad B M, Blumhagen L. Inductive interference from HVDC transmission lines on close proximity pipeline segments // CORROSION 2018. Phoenix, 2018: NACE-2018-10913
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  597
  • HTML全文浏览量:  184
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-02
  • 网络出版日期:  2020-09-16

目录

    /

    返回文章
    返回