• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MgO含量和来源对球团焙烧特性及冶金性能的影响

朱德庆 刘震 杨聪聪 潘建

朱德庆, 刘震, 杨聪聪, 潘建. MgO含量和来源对球团焙烧特性及冶金性能的影响[J]. 工程科学学报, 2021, 43(8): 1116-1124. doi: 10.13374/j.issn2095-9389.2020.07.02.006
引用本文: 朱德庆, 刘震, 杨聪聪, 潘建. MgO含量和来源对球团焙烧特性及冶金性能的影响[J]. 工程科学学报, 2021, 43(8): 1116-1124. doi: 10.13374/j.issn2095-9389.2020.07.02.006
ZHU De-qing, LIU Zhen, YANG Cong-cong, PAN Jian. Effect of magnesium oxide and its occurrence on the roasting and metallurgical performance of magnetite pellets[J]. Chinese Journal of Engineering, 2021, 43(8): 1116-1124. doi: 10.13374/j.issn2095-9389.2020.07.02.006
Citation: ZHU De-qing, LIU Zhen, YANG Cong-cong, PAN Jian. Effect of magnesium oxide and its occurrence on the roasting and metallurgical performance of magnetite pellets[J]. Chinese Journal of Engineering, 2021, 43(8): 1116-1124. doi: 10.13374/j.issn2095-9389.2020.07.02.006

MgO含量和来源对球团焙烧特性及冶金性能的影响

doi: 10.13374/j.issn2095-9389.2020.07.02.006
基金项目: 国家自然科学基金青年科学基金资助项目(52004339)
详细信息
    通讯作者:

    E-mail:13397369222@163.com

  • 中图分类号: TF046.6

Effect of magnesium oxide and its occurrence on the roasting and metallurgical performance of magnetite pellets

More Information
  • 摘要: 分别以5种不同的含镁添加剂(高镁磁铁矿、镁橄榄石、白云石、菱镁石和氧化镁粉)制备镁质球团,阐述MgO含量和来源对磁铁矿球团焙烧特性及冶金性能的影响。研究结果表明:不同的含镁添加剂对于生球的落下强度有着一定影响,其中氧化镁粉与高镁磁铁矿均能够提高球团的落下强度。相同的预热焙烧制度下,提高MgO含量会增加球团孔隙率,降低预热和焙烧球团的抗压强度,其中白云石对焙烧球团强度的不利影响最小。增加预热球团的氧化度有利于促进镁质焙烧球团固结,提高其抗压强度。在MgO来源相同的情况下,MgO含量的增加会导致球团孔隙的增减,降低了球团强度,而配加不同种类的含镁添加剂,均能不同程度改善球团的还原膨胀性、低温还原粉化性和还原性,其中配加高镁磁铁矿的球团的还原膨胀性和低温还原粉化性均优于于其他含镁球团。

     

  • 图  1  MgO质量分数及来源对高品位磁铁矿球团生球落下强度的影响

    Figure  1.  Effect of MgO mass fraction and source on the drop numbers of green balls

    图  2  MgO质量分数及来源对磁铁矿预热球团抗压强度的影响(预热温度950 ℃,预热时间12 min)

    Figure  2.  MgO mass fraction and source on compressive strength of preheated pellets (preheating at 950 ℃ for 12 min)

    图  3  MgO质量分数及来源对磁铁矿焙烧球团抗压强度的影响(预热温度950 ℃,预热时间12 min,焙烧温度1240 ℃,焙烧时间15 min)

    Figure  3.  MgO mass fraction and source on compressive strength of fired pellets (preheating at 950 ℃ for 12 min, roasting at 1240 ℃ for 15 min)

    图  4  配加不同含镁熔剂的焙烧球团微观结构图(预热温度950 ℃,预热时间12 min,焙烧温度1240 ℃,焙烧时间15 min,w(MgO)=2.45%)。(a)氧化镁粉;(b)菱镁石;(c)白云石;(d)高镁磁铁矿;(e)镁橄榄石(H—赤铁矿;S—(Fe,Mg)Fe2O4;P—孔洞;MgO—氧化镁;T—铁酸钙;F—镁橄榄石)

    Figure  4.  Mineral phases of roasted pellets with different MgO source under optical microscope (preheating at 950 ℃ for 12 min, roasting at 1240 ℃ for 15 min, w(MgO)=2.45%): (a) magnesia powder; (b) magnesite; (c) dolomite; d) high magnesium magnetite; (e) forsterite (H—Hematite; S—(Fe2O4) spinel; P—hole; T—calcium ferrite; F—forsterite)

    图  5  具有不同MgO来源的预热球团氧化度对焙烧球团抗压强度的影响(预热温度950 ℃,焙烧温度1240 ℃,焙烧时间15 min,w(MgO)=2.45%)

    Figure  5.  Relationship between compressive strength of fired pellets and different degree of preheated pellets (preheating at 950 ℃, roasting at 1240 ℃ for 15 min, w(MgO)=2.45%)

    图  6  MgO质量分数(a)与不同含镁添加剂(b)对成品球团孔隙率的影响

    Figure  6.  Effect of MgO mass fraction (a) and different magnesium-containing flux (b) on porosity of pellets

    图  7  MgO质量分数(a)与不同含镁添加剂(b)对球团低温还原粉化率RDI−3.15 mm的影响

    Figure  7.  Effect of MgO mass fraction (a) and different magnesium-containing flux (b) on RDI−3.15 mm of pellets

    图  8  MgO质量分数(a)与不同含镁添加剂(b)对球团还原膨胀率的影响

    Figure  8.  Effect of MgO mass fraction (a) and different magnesium-containing flux (b) on swelling index of pellets

    图  9  MgO质量分数(a)与不同含镁添加剂(b)对球团还原度的影响

    Figure  9.  Effect of MgO mass fraction (a) and different magnesium-containing flux (b) on reducing degree index of pellets

    表  1  原料的主要化学成分(质量分数)

    Table  1.   Chemical composition of raw materials %

    Raw materialsTFeFeOMgOAl2O3SiO2CaOK2ONa2OPSLOI*
    Ordinary magnetite69.66015.7100.3400.0101.6600.1800.0100.010<0.0100.020−1.010
    High magnesium magnetite67.73024.6602.4801.2500.9700.270<0.0100.0100.0200.520−1.240
    Forsterite35.67052.2902.3500.0490.130<0.0100.0549.560
    Dolomite20.9301.23030.5200.0220.040<0.0100.01845.990
    Magnesite45.7801.4800.8200.0200.0290.027<0.01050.640
    Bentonite2.82013.43069.9902.0900.4402.3100.0300.0509.240
    Note:* is burning loss.
    下载: 导出CSV

    表  2  原料的物理性能

    Table  2.   Physical properties of raw materials

    Raw materialsSpecific surface area/ (cm2·g−1)Ratio for different particle sizes/%
    −0.074 mm−0.043 mm
    Ordinary magnetite106189.9469.13
    High magnesium magnetite66969.9264.29
    Forsterite28368874.9
    Dolomite228294.881.8
    Magnesite306886.567.8
    Magnesia powder482699.597.2
    下载: 导出CSV

    表  3  膨润土物理性能

    Table  3.   Physical properties of bentonite

    Colloid index/
    (mL·g−1)
    Swelling coefficient/
    (mL·g−1)
    Water absorption
    (2 h)/%
    Ethylene blue
    adsorbed/g
    Montmorillonite
    content/%
    Size
    (<0.074 mm)/
    %
    10.4525.25605.3339.0980.4299.73
    下载: 导出CSV

    表  4  成品球团矿化学成分(质量分数)

    Table  4.   Chemical analysis of fired pellets %

    MgO sourceTFeFeOSiO2CaOMgOK2ONa2OPS
    68.351.820.180.350.0100.010<0.010<0.010
    Magnesia powder68.180.251.620.180.600.0100.010<0.010<0.010
    Magnesia powder66.330.331.580.171.190.0100.010<0.010<0.010
    Magnesia powder64.130.381.530.171.780.0100.010<0.010<0.010
    Magnesia powder61.590.481.470.162.450.0100.010<0.010<0.010
    Magnesite67.390.411.660.212.420.0100.010<0.010<0.010
    Dolomite65.840.422.323.272.430.0200.030<0.010<0.010
    Forsterite64.490.394.640.312.450.0100.020<0.010<0.010
    High magnesium magnetite66.702.331.370.312.44<0.010<0.010<0.010<0.010
    下载: 导出CSV
  • [1] Sahoo S K, Tiwari J N, Mishra B, et al. Prediction of flow characteristics of Al2O3–CaO–MgO–SiO2–TiO2-type blast furnace slag and its evaluation. Arab J Sci Eng, 2019, 44(7): 6393 doi: 10.1007/s13369-019-03878-8
    [2] Lü X W, Yan Z M, Pang Z D, et al. Effect of Al2O3 on physicochemical properties and structure of blast furnace slag: review. Iron Steel, 2020, 55(2): 1

    吕学伟, 严志明, 庞正德, 等. A2O3对高炉渣物化性能和结构影响研究综述. 钢铁, 2020, 55(2):1
    [3] Liu X J, Li J P, Liu S, et al. Research and development for the effect of MgO on the blast furnace production. Multipurpose Util Miner Resour, 2019(2): 16 doi: 10.3969/j.issn.1000-6532.2019.02.003

    刘小杰, 李建鹏, 刘颂, 等. MgO对高炉生产影响的研究现状及其展望. 矿产综合利用, 2019(2):16 doi: 10.3969/j.issn.1000-6532.2019.02.003
    [4] Jiang X, Shen F M, Han H S, et al. Analysis and application of sectional control of w(MgO)/w(Al2O3) in blast furnace slag. Iron Steel, 2019, 54(10): 12

    姜鑫, 沈峰满, 韩宏松, 等. 高炉渣适宜镁铝比分段管控的分析与应用. 钢铁, 2019, 54(10):12
    [5] Yang F, Wu Z Q, Cheng J W. Effects of w(MgO) on high temperature properties of high alumina blast furnace slag. Res Iron Steel, 2011, 39(1): 4

    杨福, 吴志清, 程建文. w(MgO)对高炉高铝渣高温性能的影响. 钢铁研究, 2011, 39(1):4
    [6] Wu Y, Liu Z M, Li X J, et al. Study on suitable MgO content in sinter. Res Iron Steel, 2016, 44(3): 6

    武轶, 刘自民, 李小静, 等. 烧结矿中适宜MgO含量的研究. 钢铁研究, 2016, 44(3):6
    [7] Pan X Y, Long Y, Li S Z, et al. Effect of MgO/Al2O3 on metallurgical properties of sinter. Iron Steel Van Tit, 2019, 40(4): 100 doi: 10.7513/j.issn.1004-7638.2019.04.019

    潘向阳, 龙跃, 李神子, 等. MgO/Al2O3对烧结矿冶金性能的影响. 钢铁钒钛, 2019, 40(4):100 doi: 10.7513/j.issn.1004-7638.2019.04.019
    [8] Liu C, Zhan Y Z, Kang Y, et al. Effect of MgO content on properties of low silicon sintering ore. Foundry Technol, 2017, 38(4): 885

    刘超, 张玉柱, 康月, 等. MgO含量对低硅烧结成矿性能的影响. 铸造技术, 2017, 38(4):885
    [9] Zheng A Y, Liu Z J, Cang D Q, et al. Effects of MgO on the mineral structure and softening-melting property of Ti-containing sinter. Chin J Eng, 2018, 40(02): 184

    郑安阳, 刘征建, 苍大强, 等. MgO对含钛烧结矿矿相结构及软熔滴落性能的影响. 工程科学学报, 2018, 40(02):184
    [10] Chen Q C, Han X L, Liu L. Distribution patterns and formation mechanisms of the mineralogical structure of high basicity sinter. Chin J Eng, 2019, 41(02): 181

    (陈前冲, 韩秀丽, 刘磊. 高碱度烧结矿矿相结构分布模式及形成机理. 工程科学学报, 2019, 41(02):181
    [11] Yan Z Z, Lu J G, Lü Q, et al. Impact of magnesium oxide on the green ball quality and cruslring strength of pellets. Iron Steel Van Tit, 2017, 38(6): 98 doi: 10.7513/j.issn.1004-7638.2017.06.018

    严照照, 卢建光, 吕庆, 等. MgO对生球质量和球团矿抗压强度的影响. 钢铁钒钛, 2017, 38(6):98 doi: 10.7513/j.issn.1004-7638.2017.06.018
    [12] Xie L B. Investigation on Strengthening Concretion of Magnesium Pellets and its Mechanism [Dissertation]. Changsha: Central South University, 2012

    谢路奔. 含镁球团焙烧固结强化及其机理研究[学位论文]. 长沙: 中南大学, 2012
    [13] Liu H, Xiang X P, Gan M Y, et al. Experimental study on preparation of pellets using high MgO-bearing iron ore concentrate. Sinter Pelletiz, 2019, 44(2): 33

    刘华, 向小平, 甘牧原, 等. 高镁铁精矿制备球团试验研究. 烧结球团, 2019, 44(2):33
    [14] Qing G L, Wang C D, Hou E J, et al. Compressive strength and metallurgical property of low silicon magnesium pellet. J Iron Steel Res, 2014, 26(4): 7

    青格勒, 王朝东, 侯恩俭, 等. 低硅含镁球团矿抗压强度及冶金性能. 钢铁研究学报, 2014, 26(4):7
    [15] Xu C G, Long Y, Tian T L, et al. Experimental study on metallurgical properties of high magnesia alkaline pellets. Sinter Pelletiz, 2016, 41(1): 36

    徐晨光, 龙跃, 田铁磊, 等. 高镁碱性球团矿冶金性能试验研究. 烧结球团, 2016, 41(1):36
    [16] Fan X H, Xie L B, Gan M, et al. Roasting characteristics of magnesium pellets and mechanism of strengthening concretion. J Cent South Univ Sci Technol, 2013, 44(2): 449

    范晓慧, 谢路奔, 甘敏, 等. 高镁球团焙烧特性及其固结强化机理. 中南大学学报(自然科学版), 2013, 44(2):449
    [17] Zhu D Q, Gao Z F, Pan J, et al. Influence of pellet basicity and MgO content on roasting and metallurgical properties of pellets. J Cent South Univ Sci Technol, 2013, 44(10): 3963

    朱德庆, 高子富, 潘建, 等. 碱度及MgO质量分数对球团焙烧及冶金性能的影响. 中南大学学报(自然科学版), 2013, 44(10):3963
    [18] State Administration for Market Regulation, Standardization Administration. GB/T 13240—2018 Iron Ore Pellets for Blast Furnace Feedstocks-Determination of the Free-Swelling Index. Beijing: Standards Press of China, 2018

    国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 13240—2018高炉用铁球团矿自由膨胀指数的测定. 北京: 中国标准出版社, 2018
    [19] General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. GB/T 24189—2009 Iron Ores for Blast Furnace Feedstocks-Determination of the Reducibility by the Final Degree of Reduction Index. Beijing: Standards Press of China, 2009

    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 24189—2009高炉用铁矿石用最终还原度指数表示的还原性的测定. 北京: 中国标准出版社, 2009
    [20] General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. GB/T 24204—2009 Iron Ores for Blast Furnace Feedstocks - Determination of Low-Temperature Reduction-Disintegration Indices by Dynamic Method. Beijing: Standards Press of China, 2009

    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 24204—2009高炉炉料用铁矿石低温还原粉化率的测定--动态试验法. 北京: 中国标准出版社, 2009
    [21] Gao Q J. Preparation of MgO Bearing Additive for Pellet and Mechanism Investigation of It on the Effect to Quality of Pellets [Dissertation]. Shenyang: Northeastern University, 2014

    高强健. MgO基球团添加剂制备及对球团矿质量影响的机理研究[学位论文]. 沈阳: 东北大学, 2014
    [22] Wu D, Zhang W Y, Lu S Q, et al. Study on hydration of MgO in different systems. J Salt Chem Ind, 2020, 49(3): 31 doi: 10.3969/j.issn.2096-3408.2020.03.010

    吴丹, 张文燕, 路绍琰, 等. 氧化镁在不同体系中的水化研究. 盐科学与化工, 2020, 49(3):31 doi: 10.3969/j.issn.2096-3408.2020.03.010
    [23] Yang Y B, Zhang J, Zhong Q, et al. Effect of pretreatment on the ballability of hematite in preparation of a fluxed pellet. Min Metall Eng, 2019, 39(4): 83 doi: 10.3969/j.issn.0253-6099.2019.04.020

    杨永斌, 张健, 钟强, 等. 预处理强化赤铁矿熔剂性球团制备性能的研究. 矿冶工程, 2019, 39(4):83 doi: 10.3969/j.issn.0253-6099.2019.04.020
    [24] Pan J, Yu H B, Zhu D Q, et al. Influence of MgO sources on behavior of preheated pellets of magnetite concentrate. J Cent South Univ Sci Technol, 2016, 47(6): 1823 doi: 10.11817/j.issn.1672-7207.2016.06.001

    潘建, 于鸿宾, 朱德庆, 等. MgO来源对磁铁精矿球团预热行为的影响. 中南大学学报(自然科学版), 2016, 47(6):1823 doi: 10.11817/j.issn.1672-7207.2016.06.001
    [25] Gao Z F. Preparation of Magnesium Flux Pellets and Its Reduction Behaviors in CORER Process [Dissertation]. Changsha: Central South University, 2013

    高子富. 用于COREX的含镁熔剂性球团制备及其还原行为研究[学位论文]. 长沙: 中南大学, 2013
    [26] Zhao Z L, Tang H Q, Guo Z C. Effects of CaO on precipitation morphology of metallic iron in reduction of iron oxides under CO atmosphere. J Iron Steel Res Int, 2013, 20(7): 16 doi: 10.1016/S1006-706X(13)60120-X
    [27] Cheng G J, Xue X X, Gao Z X, et al. Effect of Cr2O3 on the reduction and smelting mechanism of high-chromium vanadium-titanium magnetite pellets. ISIJ Int, 2016, 56(11): 1938 doi: 10.2355/isijinternational.ISIJINT-2016-234
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  598
  • HTML全文浏览量:  208
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-02
  • 网络出版日期:  2020-09-08
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回