• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向六关节机器人的位置域控制

崔旭东 邓少丰 王平江

崔旭东, 邓少丰, 王平江. 面向六关节机器人的位置域控制[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.08.07.002
引用本文: 崔旭东, 邓少丰, 王平江. 面向六关节机器人的位置域控制[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.08.07.002
CUI Xu-dong, DENG Shao-feng, WANG Ping-jiang. Position domain control technology for six-joint robots[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.08.07.002
Citation: CUI Xu-dong, DENG Shao-feng, WANG Ping-jiang. Position domain control technology for six-joint robots[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.08.07.002

面向六关节机器人的位置域控制

doi: 10.13374/j.issn2095-9389.2020.08.07.002
基金项目: 国家科技重大(04)专项“核工业专用零部件制造装备换脑工程” 资助项目(2017ZX04011006-005);国家科技重大(04)专项“高档数控系统关键共性技术创新能力平台(二期)” 资助项目(2015ZX04005007)
详细信息
    通讯作者:

    E-mail:pj_wang@hust.edu.cn

  • 中图分类号: TP242.2

Position domain control technology for six-joint robots

More Information
  • 摘要: 多轴联动下的串联多关节工业机器人在空间轨迹运动时,在时间上保证各关节轴单独具有良好的跟踪性能,而由于机械电气的迟滞效应,并不能完全保证理想的轮廓轨迹,这说明各个伺服轴的运动在几何空间中的同步非常重要。针对运动指令与实际位置之间的迟滞所带来的机器人末端轮廓精度不高的问题,本文结合工业机器人现有的运动学和动力学以及传统的PID控制理论,研究了六关节机器人位置域控制算法。将机器人空间轮廓轨迹的控制,通过采用主−从运动关系实时建立的方法,将时域中的各个伺服关节的同步控制方法,变换到位置域的各个伺服关节的主−从跟随的控制方法,在实现位置域的同步控制的同时,引入基于位置域的PD控制,减少了主−从跟随控制的跟随误差,从而整体提高机器人末端的轮廓运动精度。该方法在Linux CNC(Computerized Numerical Control)数控系统上,以某公司HSR-JR605机器人为对象进行了实验,证明采用位置域控制方法对六关节机器人空间运动轨迹精度的提高有积极作用。

     

  • 图  1  位置域PD控制原理框图

    Figure  1.  Schematic of PD control in the position domain

    图  2  基于LinuxCNC系统的位置域PD控制系统总体方案

    Figure  2.  Overall scheme of the PD control system based on the LinuxCNC system in position domain

    图  3  位置域PD控制算法模块结构图

    Figure  3.  Module structure of the PD control algorithm in position domain

    图  4  终端命令窗口

    Figure  4.  Terminal command window

    图  5  进给速率为30000 mm·min−1时不同控制下末端的平面圆形跟踪轨迹对比图。(a)三维图;(b)xy平面投影;(c)xz平面投影;(d)yz平面投影

    Figure  5.  Comparison of the planar circular tracking trajectories at the ends under different controls when the feed rate is 30000 mm·min−1: (a) three-dimensional figure; (b) xy plane projection; (c) xz plane projection; (d) yz plane projection

    图  8  进给速率为10000 mm·min−1时不同控制下末端的平面矩形跟踪轨迹对比图。(a)三维图;(b)xy平面投影;(c)xz平面投影;(d)yz平面投影

    Figure  8.  Comparison of the planar rectangular tracking tracks at ends under different controls at a feed rate of 10000 mm·min−1: (a) three-dimensional figure; (b) xy plane projection; (c) xz plane projection; (d) yz plane projection

    图  6  进给速率为15000 mm·min−1时不同控制下末端的平面圆形跟踪轨迹对比图。(a)三维图;(b)xy平面投影;(c)xz平面投影;(d)yz平面投影

    Figure  6.  Comparison of the planar circular tracking trajectories at ends under different controls when the feed rate is 15000 mm·min−1: (a) three-dimensional figure; (b) xy plane projection; (c) x–z plane projection; (d) yz plane projection

    图  7  进给速率为15000 mm·min−1时不同控制下末端的平面矩形跟踪轨迹对比图。(a)三维图;(b)xy平面投影;(c)xz平面投影;(d)yz平面投影

    Figure  7.  Comparison of the planar rectangular tracking tracks at ends under different controls at a feed rate of 15000 mm·min−1: (a) three-dimensional figure; (b) xy plane projection; (c) xz plane projection; (d) yz plane projection

    表  1  PID参数表

    Table  1.   PID parameters

    The shaft no.Parameter PParameter IParameter D
    J10.3106.2
    J20.3805.7
    J30.4504.95
    J40.5303.71
    J50.7803.12
    J60.9301.86
    下载: 导出CSV
  • [1] Zhou J. Intelligent manufacturing is the main direction of "Made in China 2025". Enterprise Observer, 2019(11): 54

    周济. 智能制造是“中国制造2025”主攻方向. 企业观察家, 2019(11):54
    [2] Zhang H X. Research on the development status and trend of industrial robots at home and abroad. Electron World, 2013(12): 5 doi: 10.3969/j.issn.1003-0522.2013.12.002

    张红霞. 国内外工业机器人发展现状与趋势研究. 电子世界, 2013(12):5 doi: 10.3969/j.issn.1003-0522.2013.12.002
    [3] Zhang Y. Review of the development history of foreign industrial robots. Robot Ind, 2015(3): 68

    张宇. 国外工业机器人发展历史回顾. 机器人产业, 2015(3):68
    [4] Yu D Q. Current situation and trend of industrial robots at home and abroad. Popular Utiliz Electr, 2017(9): 20

    余德泉. 国内外工业机器人发展现状与趋势. 大众用电, 2017(9):20
    [5] Ostergaard E H. Future road of industrial robots. Office Informatization, 2015(11): 15

    艾斯本·奥斯特加. 工业机器人的未来之路. 办公自动化, 2015(11):15
    [6] Astrom K J, Hagglund T. The future of PID control. Control Eng Practice, 2001, 9(11): 1163 doi: 10.1016/S0967-0661(01)00062-4
    [7] Wang S P, Xie L, Li L P, et al. Covert attack technology of EtherCAT based 7 degrees of freedom manipulator. Chin J Eng, 2020, 42(12): 1653

    汪世鹏, 解仑, 李连鹏, 等. 基于EtherCAT总线的七自由度机械臂的隐蔽攻击技术. 工程科学学报, 2020, 42(12):1653
    [8] Barton K L, Bristow D A, Alleyne A G. Design of a linear time-varying cross-coupled iterative learning controller//2008 American Control Conference (ACC). Seattle, 2008: 3914
    [9] Hu C X, Yao B, Wang Q F. Coordinated contouring controller design for an industrial biaxial linear motor driven gantry//IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2009). Singapore, 2009: 1810
    [10] Ouyang P R, Dam T, Pano V. Cross-coupled PID control in position domain for contour tracking. Robotica, 2015, 33(6): 1351 doi: 10.1017/S0263574714000769
    [11] Mu H R. Analysis and research on motion control of industrial robots. Electron Technol Software Eng, 2018(23): 115

    牟海荣. 工业机器人运动控制分析与研究. 电子技术与软件工程, 2018(23):115
    [12] Yeh S S, Hsu P L. A new approach to bi-axial cross-coupled control//Proceedings of the 2000 IEEE International Conference on Control Applications. Anchorage, 2000: 168
    [13] Ouyang P R, Dam T, Huang J, et al. Contour tracking control in position domain. Mechatronics, 2012, 22(7): 934 doi: 10.1016/j.mechatronics.2012.06.001
    [14] Ouyang P R, Kang H M, Yue W H, et al. Revisiting hybrid five-bar mechanism: Position domain control application//2014 IEEE International Conference on Information and Automation (ICIA). Hailar, 2014: 795
    [15] Ouyang P R, Pano V, Tang J, et al. Nonlinear PD-type control in position domain//2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA). Hefei, 2016: 2407
    [16] Yue W H, Pano V, Ouyang P R, et al. Model-independent position domain sliding mode control for contour tracking of robotic manipulator. Int J Syst Sci, 2017, 48(1): 190 doi: 10.1080/00207721.2016.1173742
    [17] Ouyang P R, Pano V, Tang J, et al. Position domain nonlinear PD control for contour tracking of robotic manipulator. Robot Comput-Integr Manuf, 2018, 51: 14 doi: 10.1016/j.rcim.2017.11.017
    [18] Ouyang P R, Pano V, Acob J. Position domain contour control for multi-DOF robotic system. Mechatronics, 2013, 23(8): 1061 doi: 10.1016/j.mechatronics.2013.08.005
    [19] Koutsoukos X D, Antsaklis P J, Stiver J A, et al. Supervisory control of hybrid systems. Proc IEEE, 2000, 88(7): 1026 doi: 10.1109/5.871307
    [20] Ouyang P R. Hybrid Intelligent Machine Systems: Design, Modeling and Control [Dissertation]. Saskatoon: University of Saskatchewan, 2005
    [21] Gao Z Q, Huang Y, Han J Q. An alternative paradigm for control system design//Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228). Orlando, 2001: 4578
    [22] Shen R M. Research on the Development of the Controlling System for Delta Robot Based on LinuxCNC [Dissertation]. Wuhan: Huazhong University of Science and Technology, 2018

    沈荣敏. 基于LinuxCNC的Delta机器人控制系统研发[学位论文]. 武汉: 华中科技大学, 2018
    [23] Sun H H. Research and Development of Industrial Robot The Control System Software Based on LinuxCNC [Dissertation]. Guangzhou: South China University of Technology, 2016

    孙会会. 基于LinuxCNC的工业机器人控制系统软件研究与开发[学位论文]. 广州: 华南理工大学, 2016
    [24] Zhang R H. Design and Implementation of LinuxCNC-Based Multi-Axis Control System [Dissertation]. Chengdu: University of Electronic Science and Technology, 2016

    张睿恒. 基于LinuxCNC的多轴控制系统设计与实现[学位论文]. 成都: 电子科技大学, 2016
    [25] Gao M Y, Qin X S, Bai J, et al. Development of industrial robot control system based on ROS and LinuxCNC. Mach Manuf, 2015, 53(10): 21 doi: 10.3969/j.issn.1000-4998.2015.10.005

    高美原, 秦现生, 白晶, 等. 基于ROS和LinuxCNC的工业机器人控制系统开发. 机械制造, 2015, 53(10):21 doi: 10.3969/j.issn.1000-4998.2015.10.005
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  550
  • HTML全文浏览量:  195
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-07
  • 网络出版日期:  2020-11-24

目录

    /

    返回文章
    返回