• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微振动监测的AFT厂房结构–浆液耦合振动特性

宋波 李邦 肖楠 劳俊

宋波, 李邦, 肖楠, 劳俊. 基于微振动监测的AFT厂房结构–浆液耦合振动特性[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.10.04.002
引用本文: 宋波, 李邦, 肖楠, 劳俊. 基于微振动监测的AFT厂房结构–浆液耦合振动特性[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.10.04.002
SONG Bo, LI Bang, XIAO Nan, LAO Jun. Fluid–structure interaction vibration characteristics of the AFT workshop structure based on micro-vibration monitoring[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.10.04.002
Citation: SONG Bo, LI Bang, XIAO Nan, LAO Jun. Fluid–structure interaction vibration characteristics of the AFT workshop structure based on micro-vibration monitoring[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.10.04.002

基于微振动监测的AFT厂房结构–浆液耦合振动特性

doi: 10.13374/j.issn2095-9389.2020.10.04.002
基金项目: 国家自然科学基金资助项目(52078038);中央高校基本科研业务资助项目(FRF-MP-19-003)
详细信息
    通讯作者:

    E-mail: y19801202162@163.com

  • 中图分类号: TG142.71

Fluid–structure interaction vibration characteristics of the AFT workshop structure based on micro-vibration monitoring

More Information
  • 摘要: AFT氧化风机房是脱硫工艺中的一种钢筋混凝土结构支撑钢罐的复合结构,结构产生的明显振动不利于正常生产运营,因此针对AFT结构进行现场监测和模拟计算。首先对AFT结构进行现场调查,基于一种AFT结构视频监测与局部监测相结合的方法对其进行监测,随后又提出简化搅拌机及氧化风作用的模拟方法,通过数值模拟对AFT结构振动特性进行研究。结果表明:对AFT结构进行视频监测可快速明确结构运动轨迹;局部监测结果表明搅拌机作用是结构振动的主要因素,氧化风的鼓入加剧了结构振动响应,因此造成了结构各柱间填充墙不同程度的损伤;将数值模拟结果与监测结果对比,验证了简化搅拌机及氧化风作用的计算方法,可为分析此类结构振动响应、损伤机制以及加固设计提供参考。

     

  • 图  1  AFT结构现场图

    Figure  1.  AFT structure site drawing

    图  2  结构与设备的设置。(a)搅拌机与氧化风立面布置;(b)搅拌机平面布置

    Figure  2.  Structure and equipment set: (a) vertical layout of the mixer and the oxidation wind; (b) plane layout of the mixer

    图  3  结构底部裂缝

    Figure  3.  Cracks at the bottom of the structure

    图  4  结构背立面示意及视频监测位置

    Figure  4.  Schematic diagram of the structure’s back elevation and the video monitoring position

    图  5  S 点(a)和M点(b)运动轨迹

    Figure  5.  Motion track of S (a) and M points (b)

    图  6  S、M点各个时刻的位移轨迹

    Figure  6.  Displacement tracks of S and M points at each time

    图  7  AFT结构运动轨迹示意图

    Figure  7.  Schematic diagram of the AFT structure movement track

    图  8  加速度及位移测点布置图。(a)底部B柱测点布置;(b)底部柱测点;(c)上部测点布置

    Figure  8.  Layout of acceleration and displacement measuring points: (a) layout of the measuring points of the B-pillar at the bottom; (b) bottom column measuring point; (c) arrangement of upper measuring points

    图  9  钢罐测点加速度时程(a)及位移时程曲线(b)

    Figure  9.  Time history curves of acceleration (a) and displacement (b)

    图  10  钢罐测点加速度(a)及位移峰值分布(b)

    Figure  10.  Peak distribution of the acceleration (a) and displacement (b) at measuring points of the steel tank

    图  11  结构柱加速度频谱分析

    Figure  11.  Spectrum analysis of the structural column acceleration

    图  12  有无氧化风作用下结构位移对比。(a)结构各柱位移峰值对比;(b)结构B柱位移曲线对比

    Figure  12.  Comparison of the structural displacement with and without oxidation wind: (a) comparison of the peak displacement of each column; (b) comparison of displacement curves of the structural B column

    图  13  B柱有无氧化风鼓入位移频谱对比

    Figure  13.  Displacement spectrum comparison of the B column with or without blowing of the oxidation wind

    图  14  AFT结构计算模型。(a)AFT- Structure模型;(b)AFT-CFD模型

    Figure  14.  AFT structural calculation model: (a) AFT structure model; (b) AFT-CFD model

    图  15  沿罐高位移及加速度时程曲线。(a)工况b沿罐高的x向位移时程;(b)工况d沿罐高的位移时程;(c)工况b沿罐高加速度时程;(d)工况d沿罐高加速度时程

    Figure  15.  Displacement and acceleration time history curves along the tank height: (a) x-direction displacement time history of Conditionb along the tank height; (b) displacement time history of Conditiond along the tank height; (c) acceleration time history of working Conditionb along the tank height; (d) acceleration time history of working Conditiond along the tank height

    图  16  工况d的AFT结构位移云图

    Figure  16.  Displacement nephogram of the AFT structure in Condition d

    图  17  各工况沿罐高的位移峰值(a)及加速度峰值(b)对比

    Figure  17.  Comparison of the peak values of displacement (a) and acceleration (b) along the tank height under different working conditions

    图  18  结构柱各工况的位移峰值对比

    Figure  18.  Comparison of the peak displacement of the structural column under different working conditions

    图  19  工况d频谱图。(a)位移频谱;(b)加速度频谱

    Figure  19.  Displacement (a) and acceleration spectra (b) of Condition d

    表  1  模型计算参数

    Table  1.   Model calculation parameters

    MaterialElastic modulus/PaDensity/(kg·m−3)Poisson's ratio
    Concrete3.1×101025500.2
    Steel2.06×101178500.3
    MaterialViscosityDensity
    Fluid0.021250
    下载: 导出CSV

    表  2  加载工况对比表

    Table  2.   Comparison of the loading case

    Working conditionIf there is oxidation windSimulation loading size of mixer/(m·s−1)
    aNo1
    bYes1
    cNo2
    dYes2
    下载: 导出CSV
  • [1] Li Y, Yang Z Z. Influence of key factors on lime-gypsum wet flue gas desulfurization and two circulations per tower technology. Environ Eng, 2016, 34(1): 69

    李元, 杨志忠. 湿法烟气脱硫关键影响因素及新型单塔双循环技术. 环境工程, 2016, 34(1):69
    [2] Han P, Mao X J, Zhou L H, et al. Mechanism modeling for forced oxidation system of flue gas desulfurization device. J North China Electr Power Univ, 2006, 33(5): 60

    韩璞, 毛新静, 周黎辉, 等. 湿法烟气脱硫中强制氧化系统的机理建模. 华北电力大学学报, 2006, 33(5):60
    [3] Chen J. Single-and Multi-Phase Flow Dynamics Simulations of the Side-Entering Stirred Reactors [Dissertation]. Shanghai: East China University of Science and Technology, 2013

    陈佳. 侧进式搅拌反应器内均相及多相流体动力学的数值研究[学位论文]. 上海: 华东理工大学, 2013
    [4] Xu G H, Gu X K. Investigation to the numerical simulation approach for sloshing in tanks considering fluid–structure interaction. J Ship Mech, 2012, 16(5): 514 doi: 10.3969/j.issn.1007-7294.2012.05.008

    徐国徽, 顾学康. 液舱晃荡载荷数值模拟中的流固耦合影响研究. 船舶力学, 2012, 16(5):514 doi: 10.3969/j.issn.1007-7294.2012.05.008
    [5] Xu Y X, Shao C F, Zheng D J, et al. Diagnosis of abnormal structural vibration for Xiaoshunjiang pumping station // 15th Biennial ASCE Conference on Engineering, Science, Construction, and Operations in Challenging Environments. Florida, 2016: 943
    [6] Ding Y, Ma R, Li N. A simulation model for three-dimensional coupled wave-current flumes. Eng Mech, 2015, 32(10): 68 doi: 10.6052/j.issn.1000-4750.2014.03.0190

    丁阳, 马瑞, 李宁. 三维波流耦合水槽模拟模型. 工程力学, 2015, 32(10):68 doi: 10.6052/j.issn.1000-4750.2014.03.0190
    [7] Shi Y, Shu G Q, Bi F R. Acoustic characteristics simulation of engine exhaust muffler based on CFD. J Vib Eng, 2011, 24(2): 205 doi: 10.3969/j.issn.1004-4523.2011.02.016

    石岩, 舒歌群, 毕凤荣. 基于计算流体动力学的内燃机排气消声器声学特性仿真. 振动工程学报, 2011, 24(2):205 doi: 10.3969/j.issn.1004-4523.2011.02.016
    [8] Bigoni C, Hesthaven J S. Simulation-based anomaly detection and damage localization: An application to structural health monitoring. Comput Methods Appl Mech Eng, 2020, 363: 112896 doi: 10.1016/j.cma.2020.112896
    [9] Limongelli M P, Giordano P F. Vibration-based damage indicators: A comparison based on information entropy. J Civ Struct Heal Monit, 2020, 10(2): 251 doi: 10.1007/s13349-020-00381-9
    [10] Wang X. The Reaction Process and Optimization of Flow Field in Slurry Pond of WFGD Towers [Dissertation]. Guangzhou: South China University of Technology, 2016

    王旭. 湿法烟气脱硫塔浆液池内反应过程及流场优化[学位论文]. 广州: 华南理工大学, 2016
    [11] Zhang C W. Analytical study of transient coupling between vessel motion and liquid sloshing in multiple tanks. J Eng Mech, 2016, 142(7): 04016034 doi: 10.1061/(ASCE)EM.1943-7889.0001085
    [12] Lu S S, Zhang Z F, Liu J B, et al. Passive suction and blowing flow control of wind-induced vibration of tall buildings. J Vib Shock, 2021, 40(11): 7

    卢姗姗, 张志富, 刘金博, 等. 高层建筑结构风致振动的被动吸吹气流动控制研究. 振动与冲击, 2021, 40(11):7
    [13] Li Z L, Zhang L Z, Zhu X D, et al. Design and validation of wireless dynamic testing system for bridge based on the 941B type vibration sensor // Ninth International Conference of Chinese Transportation Professionals (ICCTP). Harbin, 2009: 1
    [14] Shi Y C, Li S Q, Li Z X, et al. Rapid evaluation method for blast damage of reinforced concrete columns based on measured frequency. J Build Struct, 2021, 42(11): 155

    师燕超, 李绍琦, 李忠献, 等. 基于实测频率的钢筋混凝土柱爆炸损伤快速评估方法. 建筑结构学报, 2021, 42(11):155
    [15] Jiang X L, Zhang C X, Jiang N, et al. Shaking table test method for equipment-structure dynamic interaction. J Vib Shock, 2019, 38(3): 108

    姜忻良, 张崇祥, 姜南, 等. 设备-结构动力相互作用振动台试验方法研究. 振动与冲击, 2019, 38(3):108
    [16] Guo J, Zhu C A. Dynamic displacement measurement of large-scale structures based on the Lucas–Kanade template tracking algorithm. Mech Syst Signal Process, 2016, 66-67: 425 doi: 10.1016/j.ymssp.2015.06.004
    [17] Zhao C, Zhao J Y, Sun Q, et al. A study on identification of dynamic characteristic parameters of a transmission tower under ambient excitations. J Vib Shock, 2021, 40(4): 30

    赵超, 赵家钰, 孙清, 等. 环境激励下输电塔动力特性参数识别. 振动与冲击, 2021, 40(4):30
    [18] Zhu B R, Sun C, Huang Y. Ice-induced vibration response analysis of monopile offshore wind turbine. China Civ Eng J, 2021, 54(1): 88

    朱本瑞, 孙超, 黄焱. 海上单桩风机结构冰激振动响应分析. 土木工程学报, 2021, 54(1):88
    [19] Dong X F, Lian J J, Wang H J. Monitoring experiment and characteristic analysis of structural vibration of offshore wind turbine. J Tianjin Univ (Sci Technol), 2019, 52(2): 191

    董霄峰, 练继建, 王海军. 海上风机结构振动监测试验与特性分析. 天津大学学报(自然科学与工程技术版), 2019, 52(2):191
    [20] Wang Y L, Yue Q J, Bi X J, et al. Ice-induced vibration control effectiveness evaluation for an offshore platform based on a field monitoring. J Vib Shock, 2012, 31(7): 39 doi: 10.3969/j.issn.1000-3835.2012.07.009

    王延林, 岳前进, 毕祥军, 等. 基于现场监测的海洋平台冰振控制效果评价. 振动与冲击, 2012, 31(7):39 doi: 10.3969/j.issn.1000-3835.2012.07.009
    [21] Soman R, Kyriakides M, Onoufriou T, et al. Numerical evaluation of multi-metric data fusion based structural health monitoring of long span bridge structures. Struct Infrastructure Eng, 2018, 14(6): 673 doi: 10.1080/15732479.2017.1350984
    [22] Zhu B, Jiang N, Zhou C B, et al. Effect of excavation blast vibration on adjacent buried gas pipeline in a foundation pit. J Vib Shock, 2020, 39(11): 201

    朱斌, 蒋楠, 周传波, 等. 基坑开挖爆破作用邻近压力燃气管道动力响应特性研究. 振动与冲击, 2020, 39(11):201
    [23] Qarib H, Mohamed D. Analysis, prediction, and mitigation of vortex induced vibrations in substation structures // Electrical Transmission and Substation Structures 2018. Atlanta, 2018: 191
    [24] Wu Q Q, Zhang L K, Ma Z Y, et al. Vibration characteristics of the unit–plant structure of a hydropower station under transient load-up process. J Vib Shock, 2019, 38(18): 53

    吴嵌嵌, 张雷克, 马震岳, 等. 水电站机组–厂房结构突增负荷过渡过程振动特性研究. 振动与冲击, 2019, 38(18):53
    [25] Chen G G, Zhang L J, Bai Y, et al. Numerical simulation of the influence of the agitator parameter on the field characteristics and the power in a side-entering stirred reactor. J Beijing Univ Chem Technol (Nat Sci Ed), 2012, 39(3): 29

    陈功国, 张林进, 柏杨, 等. 侧入式搅拌槽中桨叶参数对流场及功率影响的数值模拟. 北京化工大学学报(自然科学版), 2012, 39(3):29
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  107
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-04
  • 网络出版日期:  2021-08-12

目录

    /

    返回文章
    返回