• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碱性体系选择性回收废旧锂离子电池的研究进展

龚海强 彭德招 欧星 张佳峰

龚海强, 彭德招, 欧星, 张佳峰. 碱性体系选择性回收废旧锂离子电池的研究进展[J]. 工程科学学报, 2022, 44(7): 1213-1221. doi: 10.13374/j.issn2095-9389.2020.11.18.003
引用本文: 龚海强, 彭德招, 欧星, 张佳峰. 碱性体系选择性回收废旧锂离子电池的研究进展[J]. 工程科学学报, 2022, 44(7): 1213-1221. doi: 10.13374/j.issn2095-9389.2020.11.18.003
GONG Hai-qiang, PENG De-zhao, OU Xing, ZHANG Jia-feng. Research progress on the alkaline-system selective recycling technology in spent lithium-ion batteries[J]. Chinese Journal of Engineering, 2022, 44(7): 1213-1221. doi: 10.13374/j.issn2095-9389.2020.11.18.003
Citation: GONG Hai-qiang, PENG De-zhao, OU Xing, ZHANG Jia-feng. Research progress on the alkaline-system selective recycling technology in spent lithium-ion batteries[J]. Chinese Journal of Engineering, 2022, 44(7): 1213-1221. doi: 10.13374/j.issn2095-9389.2020.11.18.003

碱性体系选择性回收废旧锂离子电池的研究进展

doi: 10.13374/j.issn2095-9389.2020.11.18.003
基金项目: 国家自然科学基金资助项目(51778627)
详细信息
    通讯作者:

    E-mail:yjyzjf@csu.edu.cn

  • 中图分类号: X705

Research progress on the alkaline-system selective recycling technology in spent lithium-ion batteries

More Information
  • 摘要: 由于锂离子电池中的杂质金属在氢氧化物中溶解度差,而锂、镍、钴由于本身氢氧化物溶解度较大,或能与氨根离子形成络合物,能大量存在于碱溶液中。因此碱浸对废旧电池正极活性物质中的金属具有较高的的选择性浸出能力,且回收工艺高效、清洁。本文依据碱浸回收的工业研究现状,总结了四种碱浸回收体系,包括氨浸−热加工−还原剂体系、氨浸-还原剂-电沉积体系、氨浸−还原剂−锂吸附体系、氨浸−还原剂−氧化分离体系,并着重介绍了不同体系的原理及优点。最后,总结了废旧锂离子电池的回收方法及前景。

     

  • 图  1  (a)废旧锂离子电池处理流程图[23];(b)废旧锂离子电池回收过程[17];(c)浸出剂含量对金属浸出效率的影响(摩尔比NH3∶(NH4)2SO3:(NH4)2CO3=1∶0.5∶1, 80 oC和1 h)[17];(d)二元体系(氨+亚硫酸铵)或三元体系(氨+亚硫酸铵+碳酸铵)中pH的变化[17];(e)碳酸铵浓度对金属浸出效率的影响(1 mol·L−1氨溶液,0.5 mol·L−1亚硫酸铵,80 oC和1 h) [17]

    Figure  1.  (a) Flow chart of recycling waste lithium-ion batteries[23]; (b) the recycling process of waste lithium-ion batteries[17]; (c) the effect of leaching agent content on metal leaching efficiency (NH3∶(NH4)2SO3:(NH4)2CO3=1∶0.5∶1, 80 °C, and 1 h)[17]; (d) change in pH in a binarysystem (ammonia + ammonium sulfite) or ternary system (ammonia + ammonium sulfite + ammonium carbonate)[17]; (e) the effect of ammonium carbonate concentration on metal leaching efficiency (1 mol·L−1 ammonia solution, 0.5 mol·L−1 ammonia sulfite solution, 80 °C, and 1 h) [17]

    图  2  (a) 废旧锂离子电池中有价金属回收过程图[24];(b) 在300 ℃和500 ℃下煅烧的阴极活性粉末的SEM图[25];(c) (NH4)2SO4浓度对Ni、Co、Li和Mn浸出效果的影响(3 mol·L−1 (NH4)2SO4,阴极粉末质量与加入溶液的体积比为100 g·L−1)[25];(d) (NH4)2SO3浓度对Ni、Co、Li和Mn浸出效果的影响(3 mol·L−1 (NH4)SO3,阴极粉末质量与加入溶液的体积比为100 g·L−1)[25]

    Figure  2.  (a) Diagram of the valuable metal recovery process from waste lithium-ion batteries[24]; (b) the SEM images of the cathode active powder calcined at 300 ℃ and 500 ℃[25]; (c) the effect of (NH4)2SO4 concentration on Ni, Co, Li, and Mn leaching efficiencies (3 mol·L−1 (NH4)2SO4, the ratio of the mass of cathode powder to volume of added solution is 100 g·L−1) [25]; (d) the effect of (NH4)2SO3 concentration on Ni, Co, Li, and Mn leaching efficiencies (3 mol·L−1 (NH4)2SO3, the ratio of the mass of cathode powder to volume of added solution is 100 g·L−1) [25]

    图  3  (a)氨浸−电沉积的工艺流程;(b) 电解沉积装置示意图[28];(c) 锂离子电池破碎筛分所得粉末[28]

    Figure  3.  (a) Process flow of ammonia leaching-electrodeposition; (b) schematic diagram of an electrolytic deposition device[28]; (c) powder obtained from crushing and sieving of lithium-ion batteries[28]

    图  4  (a)锂吸附法回收过程示意图[29];(b)锂吸附法回收锂离子电池中Li、Co和Ni的流程[29];(c) 初始锂离子浓度[29]; (d)每升溶液锂离子筛用量与锂离子筛上吸附的Li+、Ni2+和Co2+的量的关系[29]

    Figure  4.  (a) Schematic diagram of lithium adsorption recovery process[29]; (b) the process of recovering Li, Co, and Ni in lithium-ion batteries by lithium adsorption[29]; (c) initial lithium-ion concentration[29]; (d) the amount of lithium-ion sieve per liter of solution relationship with the amounts of Li+, Ni2+, and Co2+ adsorbed on the lithium-ion sieve[29]

  • [1] Zhang W X, Xu C J, He W Z, et al. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them. Waste Manage Res, 2018, 36(2): 99 doi: 10.1177/0734242X17744655
    [2] Zhang Y J, Ning P C, Yang X, et al. Research progress on the recycling technology of spent ternary lithium ion battery. Chem Ind Eng Prog, 2020, 39(7): 2828

    张英杰, 宁培超, 杨轩, 等. 废旧三元锂离子电池回收技术研究新进展. 化工进展, 2020, 39(7):2828
    [3] Xiao W K, Zhang H. Recycling status of spent lithium-ion batteries for electric vehicle in China. Chin J Power Sources, 2020, 44(8): 1217 doi: 10.3969/j.issn.1002-087X.2020.08.034

    肖武坤, 张辉. 中国废旧车用锂离子电池回收利用概况. 电源技术, 2020, 44(8):1217 doi: 10.3969/j.issn.1002-087X.2020.08.034
    [4] Wang B. Development status and suggestions of power battery recovery system for new energy vehicles in China. Logist Sci Tech, 2019, 42(2): 72 doi: 10.3969/j.issn.1002-3100.2019.02.020

    王斑. 我国新能源汽车动力电池回收体系的发展现状及建议. 物流科技, 2019, 42(2):72 doi: 10.3969/j.issn.1002-3100.2019.02.020
    [5] Zhang S J, Zhang Y W, Zhang L W, et al. Present situation and sustainable development strategy of China’s lithium resources. Inorg Chem Ind, 2020, 52(7): 1 doi: 10.11962/1006-4990.2020-0028

    张苏江, 张彦文, 张立伟, 等. 中国锂矿资源现状及其可持续发展策略. 无机盐工业, 2020, 52(7):1 doi: 10.11962/1006-4990.2020-0028
    [6] Ren G X. Research on Efficient Separation and Recovery of Valuable Metals from Waste Lithium Ion Batteries by Direct Reduction Smelting [Dissertation]. Changsha: Changsha Research Institute of Mining and Metallurgy, 2014

    任国兴. 废旧锂离子电池直接还原熔炼高效分离回收有价金属研究[学位论文]. 长沙: 长沙矿冶研究院, 2014
    [7] Gou H P, Pei Z Y, Zhou G Z, et al. Study on the recycle of the spent ternary Li-ion battery by the pyrometallurgical process. China Nonferrous Metall, 2019, 48(5): 74 doi: 10.3969/j.issn.1672-6103.2019.05.019

    苟海鹏, 裴忠冶, 周国治, 等. 废旧三元锂离子电池热解工艺研究. 中国有色冶金, 2019, 48(5):74 doi: 10.3969/j.issn.1672-6103.2019.05.019
    [8] Yao Y L, Zhu M Y, Zhao Z, et al. Hydrometallurgical processes for recycling spent lithium-ion batteries: A critical review. ACS Sustain Chem Eng, 2018, 6(11): 13611 doi: 10.1021/acssuschemeng.8b03545
    [9] Meng X H, Han K N. The principles and applications of ammonia leaching of metals—A review. Miner Process Extr Metall Rev, 1996, 16(1): 23 doi: 10.1080/08827509608914128
    [10] Zuniga M, Parada L F, Asselin E. Leaching of a limonitic laterite in ammoniacal solutions with metallic iron. Hydrometallurgy, 2010, 104(2): 260 doi: 10.1016/j.hydromet.2010.06.014
    [11] Bhuntumkomol K, Han K N, Lawson F. The leaching behaviour of nickel oxides in acid and in ammoniacal solutions. Hydrometallurgy, 1982, 8(2): 147 doi: 10.1016/0304-386X(82)90041-X
    [12] Wang R C, Lin Y C, Wu S H. A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy, 2009, 99(3): 194
    [13] Tan Q Y, Tang H H, Long G H, et al. Leaching aluminum from cathode electrode of spent lithium ion batteries by two-stage countercurrent process. Min Metall Eng, 2012, 32(3): 92 doi: 10.3969/j.issn.0253-6099.2012.03.025

    谭群英, 唐红辉, 龙桂花, 等. 二级逆流浸出废旧锂离子电池正极片中的铝. 矿冶工程, 2012, 32(3):92 doi: 10.3969/j.issn.0253-6099.2012.03.025
    [14] Zhang Y L, Yin F, Jie X W, et al. Study on removal of aluminum from spent lithium-ion batteries by alkali recycling leaching process. Nonferrous Met (Extr Metall), 2018(12): 22

    张永禄, 尹飞, 揭晓武, 等. 碱循环浸出法分离废旧锂离子电池中铝的研究. 有色金属(冶炼部分), 2018(12):22
    [15] Zhang H J, Chen X, Zou X, et al. Research progress of aluminum removal technology for cathode materials of spent lithium-ion batteries. Chin J Process Eng, 2020, 20(5): 503 doi: 10.12034/j.issn.1009-606X.219260

    张贺杰, 陈兴, 邹兴, 等. 废旧锂离子电池正极材料除铝技术研究进展. 过程工程学报, 2020, 20(5):503 doi: 10.12034/j.issn.1009-606X.219260
    [16] Zheng X H, Gao W F, Zhang X H, et al. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Waste Manage, 2017, 60: 680 doi: 10.1016/j.wasman.2016.12.007
    [17] Ku H, Jung Y, Jo M, et al. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching. J Hazard Mater, 2016, 313: 138 doi: 10.1016/j.jhazmat.2016.03.062
    [18] Wang H, Liu Y Q, Wang D, et al. Experimental study on ammonia leaching of waste lithium battery positive powder. Guangdong Chem Ind, 2020, 47(13): 69 doi: 10.3969/j.issn.1007-1865.2020.13.030

    王皓, 刘勇奇, 王杜, 等. 废旧锂电池正极粉氨性浸出实验研究. 广东化工, 2020, 47(13):69 doi: 10.3969/j.issn.1007-1865.2020.13.030
    [19] Wang S B, Wang C, Lai F J, et al. Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts. Waste Manage, 2020, 102: 122 doi: 10.1016/j.wasman.2019.10.017
    [20] Das R P, Anand S, Das S C, et al. Leaching of manganese nodules in ammoniacal medium using glucose as reductant. Hydrometallurgy, 1986, 16(3): 335 doi: 10.1016/0304-386X(86)90008-3
    [21] Qi Y P, Meng F S, Yi X X, et al. A novel and efficient ammonia leaching method for recycling waste lithium ion batteries. J Clean Prod, 2020, 251: 119665 doi: 10.1016/j.jclepro.2019.119665
    [22] Wang C, Wang S B, Yan F, et al. Recycling of spent lithium-ion batteries: Selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate. Waste Manage, 2020, 114: 253 doi: 10.1016/j.wasman.2020.07.008
    [23] Meshram P, Abhilash, Pandey B D, et al. Comparision of different reductants in leaching of spent lithium ion batteries. JOM, 2016, 68(10): 2613 doi: 10.1007/s11837-016-2032-9
    [24] Ma Y Y, Tang J J, Wanaldi R, et al. A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching. J Hazard Mater, 2021, 402: 123491 doi: 10.1016/j.jhazmat.2020.123491
    [25] Chen Y M, Liu N N, Hu F, et al. Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries. Waste Manage, 2018, 75: 469 doi: 10.1016/j.wasman.2018.02.024
    [26] Qiu R J, Lin M, Ruan J J, et al. Recovering full metallic resources from waste printed circuit boards: A refined review. J Clean Prod, 2020, 244: 118690 doi: 10.1016/j.jclepro.2019.118690
    [27] Chen M J, Li S Y, Deng Y, et al. Study on electro-deposition of ammonia leaching solution of waste lithium ion batteries cathode and anode mixture. Nonferrous Met (Extr Metall), 2020(9): 25

    陈梦君, 李淑媛, 邓毅, 等. 废旧锂离子电池正负极混合物氨浸液电沉积研究. 有色金属(冶炼部分), 2020(9):25
    [28] Qi Y P. Study on the Recycling of Waste Lithium-ion Batteries by Slurry Electrolysis [Dissertation]. Mian Yang: Southwest University off Science and Technology, 2020

    齐亚平. 废旧锂离子电池矿浆电解过程资源化研究[学术论文]. 绵阳: 西南科技大学, 2020
    [29] Wang H Y, Huang K, Zhang Y, et al. Recovery of lithium, nickel, and cobalt from spent lithium-ion battery powders by selective ammonia leaching and an adsorption separation system. ACS Sustain Chem Eng, 2017, 5(12): 11489 doi: 10.1021/acssuschemeng.7b02700
    [30] Wu C B, Li B S. Method for Preparing Graphene by Utilizing Graphite in Waste Batteries through One-step Redox: China Patent, CN110498410A. 2019-11-26

    吴彩斌, 李本盛. 利用废旧电池中石墨一步氧化还原制备石墨烯的方法: 中国专利, CN110498410A. 2019-11-26
  • 加载中
图(4)
计量
  • 文章访问数:  396
  • HTML全文浏览量:  247
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-18
  • 网络出版日期:  2021-01-20
  • 刊出日期:  2022-07-01

目录

    /

    返回文章
    返回