Research progress on the alkaline-system selective recycling technology in spent lithium-ion batteries
-
摘要: 由于锂离子电池中的杂质金属在氢氧化物中溶解度差,而锂、镍、钴由于本身氢氧化物溶解度较大,或能与氨根离子形成络合物,能大量存在于碱溶液中。因此碱浸对废旧电池正极活性物质中的金属具有较高的的选择性浸出能力,且回收工艺高效、清洁。本文依据碱浸回收的工业研究现状,总结了四种碱浸回收体系,包括氨浸−热加工−还原剂体系、氨浸-还原剂-电沉积体系、氨浸−还原剂−锂吸附体系、氨浸−还原剂−氧化分离体系,并着重介绍了不同体系的原理及优点。最后,总结了废旧锂离子电池的回收方法及前景。Abstract: Due to the issue of raw material depletion, lithium-ion batteries are becoming less value-added. In addition, the highly toxic organic electrolytes contained in them cause serious harm to humans and the environment. That is why the effective recovery of spent lithium-ion batteries is of great importance for the development and sustainable use of lithium-ion batteries. Currently, recovery of metals present in spent lithium-ion batteries mainly relies on hydrometallurgical extraction: The main metals are extracted through acid or alkali media followed by recovery of metal compounds through further processing or the resynthesis of high-performance materials. Among them, acid leaching is a short and highly efficient process; however, this process dissolves all the metal ions in the solution, making it difficult to subsequently separate and purify the valuable metals. Contrarily, the hydroxide of impure metal in lithium-ion batteries shows low solubility, whereas lithium, nickel, and cobalt have high solubility, allowing for the formation of complexes with ammonia ions that can exist in alkali solution in large quantities. Thus, alkaline leaching has better selective leaching of metals in electrode materials due to the high solubility of lithium, nickel, and cobalt ammonia complexes and has a more efficient and cleaner recovery process, which is of outstanding importance in the industry. Most research was mainly focused on various acid recovery systems and scales, and the research progress on the alkaline recovery process was insufficient. Here, based on the industrial research status of alkali leaching recovery, four alkali leaching recovery systems, which include the ammonia leaching-reductant-hot working system, ammonia leaching-reductant-electrodeposition system, ammonia leaching-reductant-lithium adsorption system, and ammonia leaching-reductant-oxidation separation system, were reviewed along with their principles and advantages. Finally, a brief summary of the recovery methods for spent lithium-ion batteries was expressed.
-
Key words:
- spent lithium-ion batteries /
- recovery /
- alkaline leaching /
- selectivity /
- metal-ammonia complex
-
图 1 (a)废旧锂离子电池处理流程图[23];(b)废旧锂离子电池回收过程[17];(c)浸出剂含量对金属浸出效率的影响(摩尔比NH3∶(NH4)2SO3:(NH4)2CO3=1∶0.5∶1, 80 oC和1 h)[17];(d)二元体系(氨+亚硫酸铵)或三元体系(氨+亚硫酸铵+碳酸铵)中pH的变化[17];(e)碳酸铵浓度对金属浸出效率的影响(1 mol·L−1氨溶液,0.5 mol·L−1亚硫酸铵,80 oC和1 h) [17]
Figure 1. (a) Flow chart of recycling waste lithium-ion batteries[23]; (b) the recycling process of waste lithium-ion batteries[17]; (c) the effect of leaching agent content on metal leaching efficiency (NH3∶(NH4)2SO3:(NH4)2CO3=1∶0.5∶1, 80 °C, and 1 h)[17]; (d) change in pH in a binarysystem (ammonia + ammonium sulfite) or ternary system (ammonia + ammonium sulfite + ammonium carbonate)[17]; (e) the effect of ammonium carbonate concentration on metal leaching efficiency (1 mol·L−1 ammonia solution, 0.5 mol·L−1 ammonia sulfite solution, 80 °C, and 1 h) [17]
图 2 (a) 废旧锂离子电池中有价金属回收过程图[24];(b) 在300 ℃和500 ℃下煅烧的阴极活性粉末的SEM图[25];(c) (NH4)2SO4浓度对Ni、Co、Li和Mn浸出效果的影响(3 mol·L−1 (NH4)2SO4,阴极粉末质量与加入溶液的体积比为100 g·L−1)[25];(d) (NH4)2SO3浓度对Ni、Co、Li和Mn浸出效果的影响(3 mol·L−1 (NH4)SO3,阴极粉末质量与加入溶液的体积比为100 g·L−1)[25]
Figure 2. (a) Diagram of the valuable metal recovery process from waste lithium-ion batteries[24]; (b) the SEM images of the cathode active powder calcined at 300 ℃ and 500 ℃[25]; (c) the effect of (NH4)2SO4 concentration on Ni, Co, Li, and Mn leaching efficiencies (3 mol·L−1 (NH4)2SO4, the ratio of the mass of cathode powder to volume of added solution is 100 g·L−1) [25]; (d) the effect of (NH4)2SO3 concentration on Ni, Co, Li, and Mn leaching efficiencies (3 mol·L−1 (NH4)2SO3, the ratio of the mass of cathode powder to volume of added solution is 100 g·L−1) [25]
图 4 (a)锂吸附法回收过程示意图[29];(b)锂吸附法回收锂离子电池中Li、Co和Ni的流程[29];(c) 初始锂离子浓度[29]; (d)每升溶液锂离子筛用量与锂离子筛上吸附的Li+、Ni2+和Co2+的量的关系[29]
Figure 4. (a) Schematic diagram of lithium adsorption recovery process[29]; (b) the process of recovering Li, Co, and Ni in lithium-ion batteries by lithium adsorption[29]; (c) initial lithium-ion concentration[29]; (d) the amount of lithium-ion sieve per liter of solution relationship with the amounts of Li+, Ni2+, and Co2+ adsorbed on the lithium-ion sieve[29]
-
参考文献
[1] Zhang W X, Xu C J, He W Z, et al. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them. Waste Manage Res, 2018, 36(2): 99 doi: 10.1177/0734242X17744655 [2] Zhang Y J, Ning P C, Yang X, et al. Research progress on the recycling technology of spent ternary lithium ion battery. Chem Ind Eng Prog, 2020, 39(7): 2828张英杰, 宁培超, 杨轩, 等. 废旧三元锂离子电池回收技术研究新进展. 化工进展, 2020, 39(7):2828 [3] Xiao W K, Zhang H. Recycling status of spent lithium-ion batteries for electric vehicle in China. Chin J Power Sources, 2020, 44(8): 1217 doi: 10.3969/j.issn.1002-087X.2020.08.034肖武坤, 张辉. 中国废旧车用锂离子电池回收利用概况. 电源技术, 2020, 44(8):1217 doi: 10.3969/j.issn.1002-087X.2020.08.034 [4] Wang B. Development status and suggestions of power battery recovery system for new energy vehicles in China. Logist Sci Tech, 2019, 42(2): 72 doi: 10.3969/j.issn.1002-3100.2019.02.020王斑. 我国新能源汽车动力电池回收体系的发展现状及建议. 物流科技, 2019, 42(2):72 doi: 10.3969/j.issn.1002-3100.2019.02.020 [5] Zhang S J, Zhang Y W, Zhang L W, et al. Present situation and sustainable development strategy of China's lithium resources. Inorg Chem Ind, 2020, 52(7): 1 doi: 10.11962/1006-4990.2020-0028张苏江, 张彦文, 张立伟, 等. 中国锂矿资源现状及其可持续发展策略. 无机盐工业, 2020, 52(7):1 doi: 10.11962/1006-4990.2020-0028 [6] Ren G X. Research on Efficient Separation and Recovery of Valuable Metals from Waste Lithium Ion Batteries by Direct Reduction Smelting [Dissertation]. Changsha: Changsha Research Institute of Mining and Metallurgy, 2014任国兴. 废旧锂离子电池直接还原熔炼高效分离回收有价金属研究[学位论文]. 长沙: 长沙矿冶研究院, 2014 [7] Gou H P, Pei Z Y, Zhou G Z, et al. Study on the recycle of the spent ternary Li-ion battery by the pyrometallurgical process. China Nonferrous Metall, 2019, 48(5): 74 doi: 10.3969/j.issn.1672-6103.2019.05.019苟海鹏, 裴忠冶, 周国治, 等. 废旧三元锂离子电池热解工艺研究. 中国有色冶金, 2019, 48(5):74 doi: 10.3969/j.issn.1672-6103.2019.05.019 [8] Yao Y L, Zhu M Y, Zhao Z, et al. Hydrometallurgical processes for recycling spent lithium-ion batteries: A critical review. ACS Sustain Chem Eng, 2018, 6(11): 13611 doi: 10.1021/acssuschemeng.8b03545 [9] Meng X H, Han K N. The principles and applications of ammonia leaching of metals—A review. Miner Process Extr Metall Rev, 1996, 16(1): 23 doi: 10.1080/08827509608914128 [10] Zuniga M, Parada L F, Asselin E. Leaching of a limonitic laterite in ammoniacal solutions with metallic iron. Hydrometallurgy, 2010, 104(2): 260 doi: 10.1016/j.hydromet.2010.06.014 [11] Bhuntumkomol K, Han K N, Lawson F. The leaching behaviour of nickel oxides in acid and in ammoniacal solutions. Hydrometallurgy, 1982, 8(2): 147 doi: 10.1016/0304-386X(82)90041-X [12] Wang R C, Lin Y C, Wu S H. A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy, 2009, 99(3): 194 [13] Tan Q Y, Tang H H, Long G H, et al. Leaching aluminum from cathode electrode of spent lithium ion batteries by two-stage countercurrent process. Min Metall Eng, 2012, 32(3): 92 doi: 10.3969/j.issn.0253-6099.2012.03.025谭群英, 唐红辉, 龙桂花, 等. 二级逆流浸出废旧锂离子电池正极片中的铝. 矿冶工程, 2012, 32(3):92 doi: 10.3969/j.issn.0253-6099.2012.03.025 [14] Zhang Y L, Yin F, Jie X W, et al. Study on removal of aluminum from spent lithium-ion batteries by alkali recycling leaching process. Nonferrous Met (Extr Metall) , 2018(12): 22张永禄, 尹飞, 揭晓武, 等. 碱循环浸出法分离废旧锂离子电池中铝的研究. 有色金属(冶炼部分), 2018(12):22 [15] Zhang H J, Chen X, Zou X, et al. Research progress of aluminum removal technology for cathode materials of spent lithium-ion batteries. Chin J Process Eng, 2020, 20(5): 503 doi: 10.12034/j.issn.1009-606X.219260张贺杰, 陈兴, 邹兴, 等. 废旧锂离子电池正极材料除铝技术研究进展. 过程工程学报, 2020, 20(5):503 doi: 10.12034/j.issn.1009-606X.219260 [16] Zheng X H, Gao W F, Zhang X H, et al. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Waste Manage, 2017, 60: 680 doi: 10.1016/j.wasman.2016.12.007 [17] Ku H, Jung Y, Jo M, et al. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching. J Hazard Mater, 2016, 313: 138 doi: 10.1016/j.jhazmat.2016.03.062 [18] Wang H, Liu Y Q, Wang D, et al. Experimental study on ammonia leaching of waste lithium battery positive powder. Guangdong Chem Ind, 2020, 47(13): 69 doi: 10.3969/j.issn.1007-1865.2020.13.030王皓, 刘勇奇, 王杜, 等. 废旧锂电池正极粉氨性浸出实验研究. 广东化工, 2020, 47(13):69 doi: 10.3969/j.issn.1007-1865.2020.13.030 [19] Wang S B, Wang C, Lai F J, et al. Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts. Waste Manage, 2020, 102: 122 doi: 10.1016/j.wasman.2019.10.017 [20] Das R P, Anand S, Das S C, et al. Leaching of manganese nodules in ammoniacal medium using glucose as reductant. Hydrometallurgy, 1986, 16(3): 335 doi: 10.1016/0304-386X(86)90008-3 [21] Qi Y P, Meng F S, Yi X X, et al. A novel and efficient ammonia leaching method for recycling waste lithium ion batteries. J Clean Prod, 2020, 251: 119665 doi: 10.1016/j.jclepro.2019.119665 [22] Wang C, Wang S B, Yan F, et al. Recycling of spent lithium-ion batteries: Selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate. Waste Manage, 2020, 114: 253 doi: 10.1016/j.wasman.2020.07.008 [23] Meshram P, Abhilash, Pandey B D, et al. Comparision of different reductants in leaching of spent lithium ion batteries. JOM, 2016, 68(10): 2613 doi: 10.1007/s11837-016-2032-9 [24] Ma Y Y, Tang J J, Wanaldi R, et al. A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching. J Hazard Mater, 2021, 402: 123491 doi: 10.1016/j.jhazmat.2020.123491 [25] Chen Y M, Liu N N, Hu F, et al. Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries. Waste Manage, 2018, 75: 469 doi: 10.1016/j.wasman.2018.02.024 [26] Qiu R J, Lin M, Ruan J J, et al. Recovering full metallic resources from waste printed circuit boards: A refined review. J Clean Prod, 2020, 244: 118690 doi: 10.1016/j.jclepro.2019.118690 [27] Chen M J, Li S Y, Deng Y, et al. Study on electro-deposition of ammonia leaching solution of waste lithium ion batteries cathode and anode mixture. Nonferrous Met (Extr Metall) , 2020(9): 25陈梦君, 李淑媛, 邓毅, 等. 废旧锂离子电池正负极混合物氨浸液电沉积研究. 有色金属(冶炼部分), 2020(9):25 [28] Qi Y P. Study on the Recycling of Waste Lithium-ion Batteries by Slurry Electrolysis [Dissertation]. Mian Yang: Southwest University off Science and Technology, 2020齐亚平. 废旧锂离子电池矿浆电解过程资源化研究[学术论文]. 绵阳: 西南科技大学, 2020 [29] Wang H Y, Huang K, Zhang Y, et al. Recovery of lithium, nickel, and cobalt from spent lithium-ion battery powders by selective ammonia leaching and an adsorption separation system. ACS Sustain Chem Eng, 2017, 5(12): 11489 doi: 10.1021/acssuschemeng.7b02700 [30] Wu C B, Li B S. Method for Preparing Graphene by Utilizing Graphite in Waste Batteries through One-step Redox: China Patent, CN110498410A. 2019-11-26吴彩斌, 李本盛. 利用废旧电池中石墨一步氧化还原制备石墨烯的方法: 中国专利, CN110498410A. 2019-11-26 -