• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

废旧三元锂离子电池正极材料的微波吸收特性

李宁 刘秉国 张利波 刘鹏 郭胜惠 董恩华

李宁, 刘秉国, 张利波, 刘鹏, 郭胜惠, 董恩华. 废旧三元锂离子电池正极材料的微波吸收特性[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.11.27.003
引用本文: 李宁, 刘秉国, 张利波, 刘鹏, 郭胜惠, 董恩华. 废旧三元锂离子电池正极材料的微波吸收特性[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.11.27.003
LI Ning, LIU Bing-guo, ZHANG Li-bo, LIU Peng, GUO Sheng-hui, DONG En-hua. Microwave absorption characteristics of cathode materials of waste ternary lithium-ion batteries[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.11.27.003
Citation: LI Ning, LIU Bing-guo, ZHANG Li-bo, LIU Peng, GUO Sheng-hui, DONG En-hua. Microwave absorption characteristics of cathode materials of waste ternary lithium-ion batteries[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.11.27.003

废旧三元锂离子电池正极材料的微波吸收特性

doi: 10.13374/j.issn2095-9389.2020.11.27.003
基金项目: 可再生能源多能互补关键技术研究及产业化应用示范(2018IB020)
详细信息
    通讯作者:

    E-mail: bingoliu@126.com

  • 中图分类号: TM912

Microwave absorption characteristics of cathode materials of waste ternary lithium-ion batteries

More Information
  • 摘要: 废旧三元锂离子电池对环境和人类有很大危害性,但是其中的锂、镍、钴、锰等有价金属,具有较高的回收价值。本文以机械破碎后的三元锂电池为原料,研究了正极材料在室温下的表观密度的介电特性以及随温度变化的微波介电特性和吸收性能。结果表明,在室温下,正极材料在表观密度为1.484 g·cm–3时具有最佳的介电性能。加热过程中,正极材料在25~700 ℃之间都有良好的微波吸收性能,400 ℃时介电常数$ {\textit{ε}}_{\rm{r}}^{{{'}}} $达到最大值11.96 F·m–1,随着微波功率增大,正极粉末升到700 ℃的时间明显缩短,最大升温速率在320~450 ℃的范围内。介电性能变化趋势与微波加热特性变化趋势相吻合。

     

  • 图  1  正极材料的XRD图

    Figure  1.  XRD spectrum of the cathode material

    图  2  正极材料的SEM和EDS分析图

    Figure  2.  SEM and EDS analysis diagrams of the cathode material

    图  3  介电测试系统的示意图。(a)介电测试装置;(b)介电器件中的圆柱谐振腔

    Figure  3.  Schematic diagram of the dielectric test system: (a) dielectric testing device; (b) cylindrical resonant cavity in the dielectric device

    图  4  实验室箱式微波炉示意图

    Figure  4.  Schematic diagram of the laboratory box microwave oven

    图  5  正极材料在2450 MHz微波辐射下不同密度下的介电性能。(a)$ {\boldsymbol{\varepsilon}}_{\bf{r}}^{{'}} $;(b)$ {\boldsymbol{\varepsilon}}_{\bf{r}}^{{''}} $;(c)tanδ

    Figure  5.  Dielectric properties of the cathode material at different densities under 2450 MHz microwave radiation: (a)$ {\boldsymbol{\varepsilon}}_{\bf{r}}^{{'}} $; (b)$ {\boldsymbol{\varepsilon}}_{\bf{r}}^{{''}} $; (c) tanδ

    图  6  正极材料在2450 MHz微波辐射下的介电性能。(a)${\boldsymbol{\varepsilon}}_{\bf{r}}^{{'}}$;(b)${\boldsymbol{\varepsilon}}_{\bf{r}}^{{''}}$;(c)tanδ; (d) Dp

    Figure  6.  Dielectric properties of the cathode material under 2450-MHz microwave radiation: (a)${\boldsymbol{\varepsilon}}_{\bf{r}}^{{'}}$; (b)${\boldsymbol{\varepsilon}}_{\bf{r}}^{{''}}$; (c) tanδ; (d) Dp

    图  7  不同温度下的反射损耗RL。(a)25 °C;(b)50 °C;(c)100 °C;(d)150 °C;(e)200 °C;(f)250 °C;(g)300 °C;(h)350 °C;(i)400 °C;(j)450 °C;(k)500 °C;(l)550 °C;(m)600 °C;(n)650 °C; (o) 700 °C

    Figure  7.  Reflection loss (RL) at different temperatures: (a) 25 °C; (b) 50 °C; (c) 100 °C; (d) 150 °C; (e) 200 °C; (f) 250 °C; (g) 300 °C; (h) 350 °C; (i) 400 °C; (j) 450 °C; (k) 500 °C; (l) 550 °C; (m) 600 °C; (n) 650 °C; (o) 700 °C

    图  8  正极材料在500、750、1000、1500和2000 W微波功率下温度随时间变化曲线

    Figure  8.  Temperature change curve of the cathode material with time under 500, 750, 1000, 1500, and 2000 W microwave power

    图  9  正极材料在不同微波功率下的温度和升温速率随时间变化曲线。(a)500 W;(b)750 W;(c)1000 W;(d)1500 W;(e)2000 W

    Figure  9.  Temperature change curve and heating rate-change curve of the cathode material with time under different microwave powers: (a) 500 W; (b) 750 W; (c) 1000 W; (d) 1500 W; (e) 2000 W

    表  1  废旧锂电池正极粉末中主要元素的含量(质量分数)

    Table  1.   Content of the main elements in the cathode material of waste lithium batteries %

    NiCoMnCLiAlFeCu
    14.546.6035.911.865.890.640.1250.002
    下载: 导出CSV
  • [1] Palacín M R, de Guibert A. Why do batteries fail? Science, 2016, 351(6273): 1253292
    [2] Gao R, Wang J F. Recovery of cobalt from the LiNi1/3Co1/3Mn1/3O2 cathode of waste lithium-ion batteries. Chin J Environ Eng, 2020, 14(2): 506 doi: 10.12030/j.cjee.201904118

    高瑞, 王继芬. 废旧锂电池正极材料LiNi1/3Co1/3Mn1/3O2中钴的回收. 环境工程学报, 2020, 14(2):506 doi: 10.12030/j.cjee.201904118
    [3] Wu Y, Pei F, Jia L L, et al. Overview of recovery technique of valuable metals from spent lithium ion batteries. Chin J Rare Met, 2013, 37(2): 320 doi: 10.3969/j.issn.0258-7076.2013.02.023

    吴越, 裴锋, 贾蕗路, 等. 废旧锂离子电池中有价金属的回收技术进展. 稀有金属, 2013, 37(2):320 doi: 10.3969/j.issn.0258-7076.2013.02.023
    [4] Li H L, Chen Y Z, Song W J, et al. Electrode material recovery mode and economic analysis of lithium-ion power battery. Adv New Renew Energy, 2018, 6(6): 505 doi: 10.3969/j.issn.2095-560X.2018.06.007

    黎华玲, 陈永珍, 宋文吉, 等. 锂离子动力电池的电极材料回收模式及经济性分析. 新能源进展, 2018, 6(6):505 doi: 10.3969/j.issn.2095-560X.2018.06.007
    [5] Saint J, Morcrette M, Larcher D, et al. Exploring the Li-Ga room temperature phase diagram and the electrochemical performances of the LixGay alloys vs Li. Solid State Ion, 2005, 176(1-2): 189 doi: 10.1016/j.ssi.2004.05.021
    [6] Xu J Q, Thomas H R, Francis R W, et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries. J Power Sources, 2008, 177(2): 512 doi: 10.1016/j.jpowsour.2007.11.074
    [7] Innocenzi V, Ippolito N M, De Michelis I, et al. A review of the processes and lab-scale techniques for the treatment of spent rechargeable NiMH batteries. J Power Sources, 2017, 362: 202 doi: 10.1016/j.jpowsour.2017.07.034
    [8] Sun Z, Cao H B, Zhang X H, et al. Spent lead-acid battery recycling in China - A review and sustainable analyses on mass flow of lead. Waste Manag, 2017, 64: 190 doi: 10.1016/j.wasman.2017.03.007
    [9] Xu L, Gao S L, Zhai G F. ADAMS-based connector mechanical separation force analysis and optimization technology research. Electromechanical Compon, 2016, 36(5): 28 doi: 10.3969/j.issn.1000-6133.2016.05.006

    徐乐, 高树良, 翟国富. 基于ADAMS的连接器机械分离力分析及优化技术研究. 机电元件, 2016, 36(5):28 doi: 10.3969/j.issn.1000-6133.2016.05.006
    [10] Pagnanelli F, Moscardini E, Altimari P, et al. Leaching of electrodic powders from lithium ion batteries: Optimization of operating conditions and effect of physical pretreatment for waste fraction retrieval. Waste Manag, 2017, 60: 706 doi: 10.1016/j.wasman.2016.11.037
    [11] Zhang T, He Y Q, Wang F F, et al. Chemical and process mineralogical characterizations of spent lithium-ion batteries: An approach by multi-analytical techniques. Waste Manag, 2014, 34(6): 1051 doi: 10.1016/j.wasman.2014.01.002
    [12] Li L, Dunn J B, Zhang X X, et al. Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment. J Power Sources, 2013, 233: 180 doi: 10.1016/j.jpowsour.2012.12.089
    [13] Wang H L, Nie L, Li J, et al. Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries. Chin Sci Bull, 2013, 58(7): 724 doi: 10.1007/s11434-012-5345-2
    [14] Nie H H, Xu L, Song D W, et al. LiCoO2: recycling from spent batteries and regeneration with solid state synthesis. Green Chem, 2015, 17(2): 1276 doi: 10.1039/C4GC01951B
    [15] Li H L, Chen Y Z, Song W J, et al. Study on recovery process of valuable metals of ternary cathode in spent lithium-ion battery. Adv New Renew Energy, 2020, 8(1): 75 doi: 10.3969/j.issn.2095-560X.2020.01.012

    黎华玲, 陈永珍, 宋文吉, 等. 废旧三元锂离子电池正极有价金属的回收工艺研究. 新能源进展, 2020, 8(1):75 doi: 10.3969/j.issn.2095-560X.2020.01.012
    [16] Li H Y, Long H L, Zhang L B, et al. Effectiveness of microwave-assisted thermal treatment in the extraction of gold in cyanide tailings. J Hazard Mater, 2020, 384: 121456 doi: 10.1016/j.jhazmat.2019.121456
    [17] Li K Q, Chen J, Peng J H, et al. Dielectric properties and thermal behavior of electrolytic manganese anode mud in microwave field. J Hazard Mater, 2020, 384: 121227 doi: 10.1016/j.jhazmat.2019.121227
    [18] Ye X L, Guo S H, Qu W W, et al. Microwave field: High temperature dielectric properties and heating characteristics of waste hydrodesulfurization catalysts. J Hazard Mater, 2019, 366: 432 doi: 10.1016/j.jhazmat.2018.12.024
    [19] Pozar D M. Microwave Engineering. 4th Ed. New York: John wiley & sons, 2011
    [20] Liao Y T. Study on the Electro-Magnetic Parameter and Mircowave Absorption Property of Carbon Nanotuber Composties [Dissertation]. Guangzhou: Guangdong University of Technology, 2006

    廖宇涛. 碳纳米管复合材料的电磁参数与吸收电磁波性能的研究[学位论文]. 广州: 广东工业大学, 2006
    [21] Liu S H, Guan H T, Duan Y P, et al. Electromagnetic absorbing characteristics of manganese dioxide composites. J Funct Mater, 2006, 37(2): 197 doi: 10.3321/j.issn:1001-9731.2006.02.009

    刘顺华, 管洪涛, 段玉平, 等. 二氧化锰复合材料吸波特性研究. 功能材料, 2006, 37(2):197 doi: 10.3321/j.issn:1001-9731.2006.02.009
    [22] Zhao Y Z, Liu B G, Zhang L B, et al. Microwave-absorbing properties of cathode material during reduction roasting for spent lithium-ion battery recycling. J Hazard Mater, 2020, 384: 121487 doi: 10.1016/j.jhazmat.2019.121487
    [23] Chaudhury A K, Rao K V. Dielectric properties of single crystals of MnO and of mixed crystals of MnO/CoO and MnO/NiO. Phys Status Solidi B, 1969, 32(2): 731 doi: 10.1002/pssb.19690320225
    [24] He F, Chen J, Chen G, et al. Correction to: Microwave dielectric properties and reduction behavior of low-grade pyrolusite. JOM, 2020, 72(10): 3706 doi: 10.1007/s11837-020-04187-4
    [25] Su X J, Mo Q H, He C L, et al. Microwave absorption characteristics of manganese compounds. Min Metall Eng, 2015, 35(5): 90 doi: 10.3969/j.issn.0253-6099.2015.05.024

    苏秀娟, 莫秋红, 何春林, 等. 锰及其化合物微波吸收性能研究. 矿冶工程, 2015, 35(5):90 doi: 10.3969/j.issn.0253-6099.2015.05.024
    [26] Shang X B, Chen J R, Peng J H, et al. Thickness optimization for petroleum coke in microwave dehydrating based on the analysis of dynamic absorption efficiency. High Temp Mater Process, 2015, 34(4): 367
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  63
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-27
  • 网络出版日期:  2021-06-18

目录

    /

    返回文章
    返回