• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高磷鲕状铁矿直接还原−磁选提铁降磷扩大试验研究

吴世超 孙体昌 寇珏 李小辉

吴世超, 孙体昌, 寇珏, 李小辉. 高磷鲕状铁矿直接还原−磁选提铁降磷扩大试验研究[J]. 工程科学学报, 2022, 44(5): 849-856. doi: 10.13374/j.issn2095-9389.2020.11.29.002
引用本文: 吴世超, 孙体昌, 寇珏, 李小辉. 高磷鲕状铁矿直接还原−磁选提铁降磷扩大试验研究[J]. 工程科学学报, 2022, 44(5): 849-856. doi: 10.13374/j.issn2095-9389.2020.11.29.002
WU Shi-chao, SUN Ti-chang, KOU Jue, LI Xiao-hui. Pilot study of high-phosphorus oolitic iron ore for iron recovery and dephosphorization by direct reduction–magnetic separation[J]. Chinese Journal of Engineering, 2022, 44(5): 849-856. doi: 10.13374/j.issn2095-9389.2020.11.29.002
Citation: WU Shi-chao, SUN Ti-chang, KOU Jue, LI Xiao-hui. Pilot study of high-phosphorus oolitic iron ore for iron recovery and dephosphorization by direct reduction–magnetic separation[J]. Chinese Journal of Engineering, 2022, 44(5): 849-856. doi: 10.13374/j.issn2095-9389.2020.11.29.002

高磷鲕状铁矿直接还原−磁选提铁降磷扩大试验研究

doi: 10.13374/j.issn2095-9389.2020.11.29.002
基金项目: 国家重点研发计划资助项目(2021YFC2902404);国家自然科学基金资助项目(51874017)
详细信息
    通讯作者:

    E-mail: suntichang@163.com

  • 中图分类号: TD925

Pilot study of high-phosphorus oolitic iron ore for iron recovery and dephosphorization by direct reduction–magnetic separation

More Information
  • 摘要: 为给回转窑工业试验提供参数,以小型试验最佳结果为基础,进行了高磷鲕状铁矿煤基直接还原−磁选提铁降磷扩大试验。结果表明,在最佳的条件下可获得铁品位94.17%、铁回收率77.47%以及磷质量分数0.08%的粉末还原铁,推荐的回转窑工业试验初始条件为:石灰石用量(质量分数)28%、无烟煤用量(质量分数)16%、还原温度1300 ℃,还原时间3 h。采用XRD以及SEM-EDS研究了无烟煤的作用机理,发现无烟煤用量增加,促进了浮氏体、镁铁尖晶石的还原以及铁颗粒长大,从而提高了铁的回收效果,但过多的无烟煤通过增强还原气氛及其带入的灰分消耗了石灰石,使铁矿物中的磷以及磷灰石还原成单质磷并与铁颗粒形成铁磷合金。

     

  • 图  1  试样的XRD谱图

    Figure  1.  X-ray diffraction pattern of the sample

    图  2  还原焙烧−磁选工艺试验程序

    Figure  2.  Experimental procedure for the reduction roasting–magnetic separation process

    图  3  (a)反应(1)~(9)的ΔGT的关系;(b) 铁、磷矿物还原与C气化的平衡图

    Figure  3.  (a) Relationship between ΔG and T of reactions (1)–(9); (b) equilibrium diagram of iron and phosphorus mineral reduction and carbon gasification

    图  4  无烟煤用量对粉末还原铁指标的影响

    Figure  4.  Effect of anthracite dosages on the indices of powdered reduced iron

    图  5  还原温度对粉末还原铁指标的影响

    Figure  5.  Effect of reduction temperature on the indices of powdered reduced iron

    图  6  还原时间对粉末还原铁指标的影响

    Figure  6.  Effect of reduction time on the indices of powdered reduced iron

    图  7  不同无烟煤用量下焙烧矿的XRD图谱

    Figure  7.  X-ray diffraction patterns of roasted ores with different anthracite dosages

    图  8  不同无烟煤用量下焙烧矿的SEM图和EDS分析。(a)16%;(b)18%;(c)20%;(d)图(a)中点1的能谱图;(e)图(b)中点2的能谱图;(f)图(c)中点3的能谱图

    Figure  8.  SEM images and EDS analyses of roasted ores with different anthracite dosages: (a) 16%; (b) 18%; (c) 20%; (d) energy spectrum of point 1 in Fig.(a); (e) energy spectrum of point 2 in Fig.(b); (f) energy spectrum of point 3 in Figs.(c)

    图  9  不同无烟煤用量下磷的迁移行为

    Figure  9.  Migration behavior of phosphorus under different anthracite dosages

    表  1  试样的化学成分(质量分数)

    Table  1.   Chemical composition of the sample %

    TFeSiO2Al2O3CaOMgOK2OPSMnOLOI
    55.656.714.802.130.370.0340.560.0160.224.93
    下载: 导出CSV

    表  2  试样中铁的物相分析

    Table  2.   Distributions of iron in the mineral phases of the sample

    PhaseMass fraction of minerals /
    %
    Distribution of iron in minerals/%
    Magnetite30.1254.29
    Martite11.4420.73
    Hematite13.4324.14
    Siderite0.430.77
    Ferrosilite0.020.03
    Iron sulfide0.020.04
    Total55.55100
    下载: 导出CSV

    表  3  试样中磷的物相分析

    Table  3.   Distributions of phosphorous in the mineral phases of the sample

    PhaseMass fraction of minerals /%Distribution of iron in minerals/%
    Apatite0.2950.88
    Phosphorous in the iron-bearing phase0.2442.10
    Others0.037.02
    Total0.56100
    下载: 导出CSV

    表  4  粉末还原铁的化学组成(质量分数)

    Table  4.   Chemical compositions of the powdered reduced iron %

    FeMFePCaOSiO2Al2O3MgOMnOCS
    94.1792.270.0801.481.130.640.120.0460.490.02
    下载: 导出CSV
  • [1] Wu S C, Li Z Y, Sun T C, et al. Effect of additives on iron recovery and dephosphorization by reduction roasting–magnetic separation of refractory high-phosphorus iron ore. Int J Miner Metall Mater, 2021, 28(12): 1908 doi: 10.1007/s12613-021-2329-8
    [2] Bao Q P, Guo L, Guo Z C. A novel direct reduction-flash smelting separation process of treating high phosphorous iron ore fines. Powder Technol, 2021, 377: 149 doi: 10.1016/j.powtec.2020.08.066
    [3] Zhou W T, Han Y X, Sun Y S, et al. Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment. Int J Miner Metall Mater, 2020, 27(4): 443 doi: 10.1007/s12613-019-1897-3
    [4] Tang H Q, Qi T F, Qin Y Q. Production of low-phosphorus molten iron from high-phosphorus oolitic hematite using biomass char. JOM, 2015, 67(9): 1956 doi: 10.1007/s11837-015-1541-2
    [5] Quast K. A review on the characterisation and processing of oolitic iron ores. Miner Eng, 2018, 126: 89 doi: 10.1016/j.mineng.2018.06.018
    [6] Zhu D Q, Chun T J, Pan J, et al. Upgrading and dephosphorization of Western Australian iron ore using reduction roasting by adding sodium carbonate. Int J Miner Metall Mater, 2013, 20(6): 505 doi: 10.1007/s12613-013-0758-8
    [7] Yu W, Sun T C, Kou J, et al. The function of Ca(OH)2 and Na2CO3 as additive on the reduction of high-phosphorus oolitic hematite-coal mixed pellets. ISIJ Int, 2013, 53(3): 427 doi: 10.2355/isijinternational.53.427
    [8] Li G H, Zhang S H, Rao M J, et al. Effects of sodium salts on reduction roasting and Fe-P separation of high-phosphorus oolitic hematite ore. Int J Miner Process, 2013, 124: 26 doi: 10.1016/j.minpro.2013.07.006
    [9] Rao M J, Ouyang C Z, Li G H, et al. Behavior of phosphorus during the carbothermic reduction of phosphorus-rich oolitic hematite ore in the presence of Na2SO4. Int J Miner Process, 2015, 143: 72 doi: 10.1016/j.minpro.2015.09.002
    [10] Li Y L, Sun T C, Xu C Y, et al. New dephosphorizing agent for phosphorus removal from high-phosphorus oolitic hematite ore in direct reduction roasting. J Central South Univ (Sci Technol), 2012, 43(3): 827

    李永利, 孙体昌, 徐承焱, 等. 高磷鲕状赤铁矿直接还原同步脱磷新脱磷剂. 中南大学学报(自然科学版), 2012, 43(3):827
    [11] Xu C Y, Sun T C, Qi C Y, et al. Effects of reductants on direct reduction and synchronous dephosphorization of high-phosphorous oolitic hematite. Chin J Nonferrous Met, 2011, 21(3): 680

    徐承焱, 孙体昌, 祁超英, 等. 还原剂对高磷鲕状赤铁矿直接还原同步脱磷的影响. 中国有色金属学报, 2011, 21(3):680
    [12] Yu W, Tang Q Y, Chen J A, et al. Thermodynamic analysis of the carbothermic reduction of a high-phosphorus oolitic iron ore by FactSage. Int J Miner Metall Mater, 2016, 23(10): 1126 doi: 10.1007/s12613-016-1331-z
    [13] Zhang Y Y, Xue Q G, Wang G, et al. Phosphorus-containing mineral evolution and thermodynamics of phosphorus vaporization during carbothermal reduction of high-phosphorus iron ore. Metals, 2018, 8(6): 451 doi: 10.3390/met8060451
    [14] Sun Y S, Han Y X, Wei X C, et al. Non-isothermal reduction kinetics of oolitic iron ore in ore/coal mixture. J Therm Anal Calorim, 2016, 123(1): 703 doi: 10.1007/s10973-015-4863-y
    [15] Sun Y S, Han Y X, Gao P, et al. Thermogravimetric study of coal-based reduction of oolitic iron ore: Kinetics and mechanisms. Int J Miner Process, 2015, 143: 87 doi: 10.1016/j.minpro.2015.09.005
    [16] Cha J W, Kim D Y, Jung S M. Distribution behavior of phosphorus and metallization of iron oxide in carbothermic reduction of high-phosphorus iron ore. Metall Mater Trans B, 2015, 46(5): 2165 doi: 10.1007/s11663-015-0399-6
    [17] Sun Y S, Han Y X, Gao P, et al. Distribution behavior of phosphorus in the coal-based reduction of high-phosphorus-content oolitic iron ore. Int J Miner Metall Mater, 2014, 21(4): 331 doi: 10.1007/s12613-014-0913-x
    [18] Li Y F, Han Y X, Sun Y S, et al. Growth behavior and size characterization of metallic iron particles in coal-based reduction of oolitic hematite–coal composite briquettes. Minerals, 2018, 8(5): 177 doi: 10.3390/min8050177
    [19] Sun Y S, Han Y X, Li Y F, et al. Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore. Int J Miner Metall Mater, 2017, 24(2): 123 doi: 10.1007/s12613-017-1386-5
    [20] Hu J G, Wu M Q, Mao Y L. Latest development of direct reduction processes of iron ores. Res Iron Steel, 2006, 34(2): 53 doi: 10.3969/j.issn.1001-1447.2006.02.014

    胡俊鸽, 吴美庆, 毛艳丽. 直接还原炼铁技术的最新发展. 钢铁研究, 2006, 34(2):53 doi: 10.3969/j.issn.1001-1447.2006.02.014
    [21] Cao Z C, Sun T C, Xue X, et al. Iron recovery from discarded copper slag in a RHF direct reduction and subsequent grinding/magnetic separation process. Minerals, 2016, 6(4): 119 doi: 10.3390/min6040119
    [22] Chu M S, Zhao Q J. Present status and development perspective of direct reduction and smelting reduction in China. China Metall, 2008, 18(9): 1 doi: 10.3969/j.issn.1006-9356.2008.09.001

    储满生, 赵庆杰. 中国发展非高炉炼铁的现状及展望. 中国冶金, 2008, 18(9):1 doi: 10.3969/j.issn.1006-9356.2008.09.001
    [23] Liang Z K, Yi L Y, Huang Z C, et al. A novel and green metallurgical technique of highly efficient iron recovery from refractory low-grade iron ores. ACS Sustain Chem Eng, 2019, 7(22): 18726 doi: 10.1021/acssuschemeng.9b05423
    [24] Ma B Z, Yang W J, Xing P, et al. Pilot-scale plant study on solid-state metalized reduction-magnetic separation for magnesium-rich nickel oxide ores. Int J Miner Process, 2017, 169: 99 doi: 10.1016/j.minpro.2017.11.002
    [25] Wu S C, Sun T C, Yang H F. Study on phosphorus removal of high-phosphorus oolitic hematite abroad by direct reduction and magnetic separation. Met Mine, 2019(11): 109

    吴世超, 孙体昌, 杨慧芬. 国外某高磷鲕状赤铁矿直接还原−磁选降磷研究. 金属矿山, 2019(11):109
    [26] Yang M, Zhu Q S, Fan C L, et al. Roasting-induced phase change and its influence on phosphorus removal through acid leaching for high-phosphorus iron ore. Int J Miner Metall Mater, 2015, 22(4): 346 doi: 10.1007/s12613-015-1079-x
    [27] Huang W S, Yan L, Wu S C, et al. Study on the process mineralogy of a high phosphorus oolitic iron ore in abroad. Met Mine, 2020(9): 137

    黄武胜, 延黎, 吴世超, 等. 国外某高磷鲕状铁矿石工艺矿物学研究. 金属矿山, 2020(9):137
    [28] Guo Z Q, Zhu D Q, Pan J, et al. Innovative methodology for comprehensive and harmless utilization of waste copper slag via selective reduction-magnetic separation process. J Clean Prod, 2018, 187: 910 doi: 10.1016/j.jclepro.2018.03.264
    [29] Zhu D Q, Xu J W, Guo Z Q, et al. Synergetic utilization of copper slag and ferruginous manganese ore via co-reduction followed by magnetic separation process. J Clean Prod, 2020, 250: 119462 doi: 10.1016/j.jclepro.2019.119462
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  375
  • HTML全文浏览量:  190
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-29
  • 网络出版日期:  2021-02-05
  • 刊出日期:  2022-05-05

目录

    /

    返回文章
    返回