• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等效岩体三维随机节理网络模型构建及其在两河口水电站中的应用

武娜 梁正召 宋文成 李万润

武娜, 梁正召, 宋文成, 李万润. 等效岩体三维随机节理网络模型构建及其在两河口水电站中的应用[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.11.30.003
引用本文: 武娜, 梁正召, 宋文成, 李万润. 等效岩体三维随机节理网络模型构建及其在两河口水电站中的应用[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2020.11.30.003
WU Na, LIANG Zheng-zhao, SONG Wen-cheng, LI Wan-run. Construction of a 3D equivalent rock random fracture network model and its application in the Lianghekou Hydropower Station[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.11.30.003
Citation: WU Na, LIANG Zheng-zhao, SONG Wen-cheng, LI Wan-run. Construction of a 3D equivalent rock random fracture network model and its application in the Lianghekou Hydropower Station[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2020.11.30.003

等效岩体三维随机节理网络模型构建及其在两河口水电站中的应用

doi: 10.13374/j.issn2095-9389.2020.11.30.003
基金项目: 国家自然科学基金资助项目(41977219,51779031);深地科学与工程教育部重点实验室(四川大学)开放基金资助项目(DESE202206)
详细信息
    通讯作者:

    E-mail: liangzz@dlut.edu.cn

  • 中图分类号: TG142.71

Construction of a 3D equivalent rock random fracture network model and its application in the Lianghekou Hydropower Station

More Information
  • 摘要: 节理的存在对水电高陡岩质边坡的力学性质有重要影响,如何构建反映三维节理分布特征的等效岩体计算模型,是分析与评价岩体力学特性的关键。本文基于损伤力学和统计强度理论,在三维岩石破裂过程分析(RFPA3D)软件的基础上,提出了一种计算等效岩体三维随机节理网络模型的新方法。首先,基于Baecher模型和Monte-Carlo方法,在RFPA3D软件中实现了三维随机离散节理网络(Discrete fracture network,DFN)模型的重构。然后,利用内嵌DFN模型,赋予节理和岩石不同的力学参数,构建了工程尺度等效岩体三维随机节理网络模型,实现了三维随机节理岩体破裂过程、变形和强度等力学性质的分析。最后,以两河口水电站左岸边坡坝址区下游节理岩体为对象,验证了三维随机DFN模型的准确性,开展了研究区内节理岩体尺寸效应研究,并获得了研究区内岩体的表征单元体(Representative elementary volume,REV)和等效力学参数。该研究成果为等效岩体力学行为分析提供一种新方法。

     

  • 图  1  节理的透视化模型。(a)一组节理面;(b)两组节理面;(c)三组节理面

    Figure  1.  Perspective model of fracture: (a) a set of joint planes; (b) two sets of joint planes; (c) three sets of joint planes

    图  2  等效岩体三维随机节理网络模型的构建。(a)岩石模型;(b)DFN模型;(c)等效岩体模型

    Figure  2.  Construction of three-dimensional random DFN model of equivalent rock mass: (a) rock model; (b) DFN model; (c) equivalent rock mass model

    图  3  基于3GSM软件节理分布图。(a)坝址区下游处边坡岩体;(b)上半球赤平投影图

    Figure  3.  Fracture distribution diagrams based on 3GSM: (a) slope rock mass downstream of dam site; (b) stereogram of the upper hemisphere

    图  4  1#节理面几何参数概率分布直方图。(a)节理面倾向;(b)节理面倾角;(c)节理面迹长;(d)节理面间距

    Figure  4.  Probability distribution histogram of geometric parameters of 1# fracture surfaces: (a) joint plane dip; (b) joint plane inclination; (c) trace length of joint surface; (d) joint plane spacing

    图  5  等效岩体三维随机DFN模型剖面截取。(a)节理面剖面;(b)节理面剖面出露迹线

    Figure  5.  Profile capture of three-dimensional random DFN model of equivalent rock mass: (a) joint surface profile; (b) exposed trace of joint surface profile

    图  6  三维节理岩体尺寸效应研究。(a)L= 1 m;(b)L= 2 m;……;(f)L= 12 m

    Figure  6.  Scale effect of three-dimensional fractured rock mass: (a) model side length is 1 m; (b) model side length is 2 m; ……; (f) model side length is 12 m

    图  7  数值模拟结果。(a)岩体力学参数尺寸效应;(b)岩体力学参数变化系数随模型变化规律

    Figure  7.  Numerical simulation results: (a) scale effect of rock mass mechanical parameters; (b) variation law of rock mass mechanical parameter variation coefficient with model size

    表  1  节理面几何参数的概率分布及数值

    Table  1.   Probability distribution and value of geometric parameters of fractures

    Joint planeInclination/(°)Dip angle/(°)Mean value of bulk density/ m−3
    Distribution typeMean valueStandard deviation Distribution typeMean valueStandard deviation
    1#Normal235.156.48 Normal25.988.410.01734
    2#Lognormal351.340.15 Lognormal28.160.830.02020
    3#Normal94.7313.68 Normal85.809.920.05838
    Joint planeTrace length/m Spacing/m
    Distribution typeMean valueStandard deviationDistribution typeMean valueStandard deviation
    1#Lognormal3.422.05 Negative exponential1.351.21
    2#Normal3.121.48Lognormal1.701.55
    3#Lognormal2.961.39Negative exponential0.690.7
    下载: 导出CSV

    表  2  等效岩体三维节理网络模拟数据检验

    Table  2.   Verification of three-dimensional DFN model data of equivalent rock mass

    ParameterSimulation value Measured value Error /%
    1# joint plane2# joint plane3# joint plane 1# joint plane2# joint plane3# joint plane 1# joint plane2# joint plane3# joint plane
    Dip angle27.3531.2483.36 25.9828.1685.80 5.2710.942.84
    Trace length3.612.953.24 3.423.122.96 5.565.459.46
    Bulk density0.0150.0220.054 0.0170.0200.058 11.7410.007.14
    下载: 导出CSV

    表  3  研究区域内岩石和节理的参数

    Table  3.   Parameters of rocks and fractures in the study area

    Material typeHeterogeneityUniaxial compressive strength/MPaElastic modulus /GPaFriction angle / (°)Poisson's ratio
    Rock5108.937.6560.24
    Joint25.451.88300.39
    下载: 导出CSV
  • [1] Wang X M, Du Y F, Liang X L. Investigation of the representative elementary volume of fractured rock mass using the homogeneity index. Hydroge Eng Geol, 2021, 48(2): 55
    [2] Wang H T, Chen X Y, Liu Y M, et al. Study on structure features of deep rock in Yanqianshan iron mine. Mod Min, 2019, 35(6): 74 doi: 10.3969/j.issn.1674-6082.2019.06.019

    王恒涛, 陈晓云, 刘育明, 等. 眼前山铁矿深部矿岩结构特征分析. 现代矿业, 2019, 35(6):74 doi: 10.3969/j.issn.1674-6082.2019.06.019
    [3] Lei G W, Yang C H, Wang G B, et al. Geometric features of joints and quality evaluation of rock mass in Xinchang section, Beishan. Chin J Rock Mech Eng, 2016, 35(5): 896

    雷光伟, 杨春和, 王贵宾, 等. 北山预选区新场地段岩体节理几何特征及评价. 岩石力学与工程学报, 2016, 35(5):896
    [4] Du Y, Xie M W, Jiang Y J, et al. Experimental study on cumulative damage assessment of rock-block using a laser Doppler vibrometer. Chin J Eng, 2017, 39(1): 141

    杜岩, 谢谟文, 蒋宇静, 等. 应用激光多普勒测振仪的岩块体累计损伤评价试验研究. 工程科学学报, 2017, 39(1):141
    [5] Xu D, Feng X T, Li S J, et al. In-situ testing technique for tunnel deformation and structural plane of rock mass based on contactless laser scanning method and its application. Chin J Geotech Eng, 2018, 40(7): 1336

    许度, 冯夏庭, 李邵军, 等. 激光扫描隧洞变形与岩体结构面测试技术及应用. 岩土工程学报, 2018, 40(7):1336
    [6] Jiang M C, Lin J F, Yuan H L, et al. Application of 3D laser scanning in rock mass integrity analysis of the slope in a super bridge. Geotech Investig Surv, 2020, 48(9): 66

    江木春, 林剑锋, 袁海龙, 等. 三维激光扫描在某特大桥斜坡岩体完整性分析中应用探索. 工程勘察, 2020, 48(9):66
    [7] Du S G. Method of equal accuracy assessment for the stability analysis of large open-pit mine slopes. Chin J Rock Mech Eng, 2018, 37(6): 1301

    杜时贵. 大型露天矿山边坡稳定性等精度评价方法. 岩石力学与工程学报, 2018, 37(6):1301
    [8] Wang F Y, Zhao M Y, Wang M C, et al. Application of UAV photogrammetry in mine geological environment survey. J Jilin Univ Earth Sci Ed, 2020, 50(3): 866

    王凤艳, 赵明宇, 王明常, 等. 无人机摄影测量在矿山地质环境调查中的应用. 吉林大学学报(地球科学版), 2020, 50(3):866
    [9] Cao J, Chen G L, Wan C C, et al. Application of ShapeMetrix3D system in the engineering geology survey of Jiama copper mine. China Min Mag, 2018, 27(Suppl 1): 320

    曹俊, 陈国良, 万串串, 等. ShapeMetrix3D系统在甲玛矿工程地质调查中的应用. 中国矿业, 2018, 27(增刊1): 320
    [10] Cai H Y, Zhang Y P, Wang T, et al. Optimal selection and design of residual ore recovery method based on 3GSM stability evaluation of rock mass. Min Res Dev, 2018, 38(12): 17

    蔡汉玉, 张耀平, 王涛, 等. 基于3GSM岩体稳定性评价的残矿回收方法优选及设计. 矿业研究与开发, 2018, 38(12):17
    [11] Pham H, Parashar R, Sund N, et al. A method to represent a well in a three-dimensional discrete fracture network model. Groundwater, 2021, 59(2): 281 doi: 10.1111/gwat.13030
    [12] Zhang Y, Peng L W. Study on the three-dimensional crack network model of rock mass based on Monte-Carlo. J Gansu Sci, 2020, 32(2): 124

    张亚, 彭乐文. 基于Monte-Carlo的岩体三维裂隙网络模型研究. 甘肃科学学报, 2020, 32(2):124
    [13] Liu B, Jin A B, Gao Y T, et al. Construction method research on DFN model based on fractal geometry theory. Rock Soil Mech, 2016, 37(Suppl 1): 625

    刘波, 金爱兵, 高永涛, 等. 基于分形几何理论的DFN模型构建方法研究. 岩土力学, 2016, 37(增刊1): 625
    [14] Wu S C, Zhou Y, Gao Y T, et al. Research on construction method of stochastic joints 3d-network model of equivalent rock mass. Chin J Rock Mech Eng, 2012, 31(Suppl 1): 3082

    吴顺川, 周喻, 高永涛, 等. 等效岩体随机节理三维网络模型构建方法研究. 岩石力学与工程学报, 2012, 31(增刊1): 3082
    [15] Elmo D, Stead D. An integrated numerical modelling-discrete fracture network approach applied to the characterisation of rock mass strength of naturally fractured Pillars. Rock Mech Rock Eng, 2010, 43(1): 3 doi: 10.1007/s00603-009-0027-3
    [16] Jin A B, Wang B X, Zhao Y Q, et al. Analysis of the deformation and fracture of underground mine roadway by joint rock mass numerical model. Arab J Geosci, 2019, 12(18): 1
    [17] Vazaios I, Farahmand K, Vlachopoulos N, et al. Effects of confinement on rock mass modulus: A synthetic rock mass modelling (SRM) study. J Rock Mech Geotech Eng, 2018, 10(3): 436 doi: 10.1016/j.jrmge.2018.01.002
    [18] Wang X Q, Kang H P, Gao F Q, et al. DEM simulation of mechanical behavior of jointed coal in large scale under uniaxial compression. J China Coal Soc, 2018, 43(11): 3088

    王晓卿, 康红普, 高富强, 等. 大尺寸节理煤体单轴压缩力学行为的离散元模拟研究. 煤炭学报, 2018, 43(11):3088
    [19] Wu Q, Tang H M, Wang L Q, et al. Three-dimensional distinct element simulation of size effect and spatial anisotropy of mechanical parameters of jointed rock mass. Chin J Rock Mech Eng, 2014, 33(12): 2419

    吴琼, 唐辉明, 王亮清, 等. 基于三维离散元仿真试验的复杂节理岩体力学参数尺寸效应及空间各向异性研究. 岩石力学与工程学报, 2014, 33(12):2419
    [20] Cui Z, Sheng Q. Numerical modelling of structural effect of equivalent mechanical parameters of fractured rock mass. Rock Soil Mech, 2018, 39(10): 3830

    崔臻, 盛谦. 裂隙岩体等效力学参数结构效应的计算机模拟试验研究. 岩土力学, 2018, 39(10):3830
    [21] Yang Z M, Gao Y T, Wu S C, et al. Study of the influence of joint parameters on rock mass strength based on equivalent rock mass technology. J China Univ Min Technol, 2018, 47(5): 979

    杨忠民, 高永涛, 吴顺川, 等. 基于等效岩体技术的节理参数对岩体强度影响性研究. 中国矿业大学学报, 2018, 47(5):979
    [22] Mei T. Study on Optimization of 3D Joint Network Simulation in Rock Mass and Its Application in Jijicao Block, Beishan, Gansu Province [Dissertation]. Wuhan: Chinese Academy of Sciences (Wuhan Institute of Geotechnical Mechanics), 2008

    梅涛. 岩体节理三维网络模拟优化及在甘肃北山芨芨槽岩块的应用研究[学位论文]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2008
    [23] Wu S C, Gao Y H, Gao Y T, et al. Research on representative elemental volume of equivalent joint rock mass. J China Univ Min Technol, 2014, 43(6): 1120

    吴顺川, 高艳华, 高永涛, 等. 等效节理岩体表征单元体研究. 中国矿业大学学报, 2014, 43(6):1120
    [24] Liang Z Z. Three-Dimensional Failure Process Analysis of Rock and Associated Numerical Tests [Dissertation]. Shenyang: Northeastern University, 2005

    梁正召. 三维条件下的岩石破裂过程分析及其数值试验方法研究[学位论文]. 沈阳: 东北大学, 2005
    [25] Lang Y X, Liang Z Z, Dong Z. Three-dimensional microscopic model reconstruction of basalt and numerical direct tension tests. Chin J Eng, 2019, 41(8): 997

    郎颖娴, 梁正召, 董卓. 玄武岩三维细观孔隙模型重构与直接拉伸数值试验. 工程科学学报, 2019, 41(8):997
    [26] Priest S D, Hudson J A. Discontinuity spacings in rock. Int J Rock Mech Min Sci Geomech Abstr, 1976, 13(5): 135 doi: 10.1016/0148-9062(76)90818-4
    [27] Yang J P, Chen W Z, Dai Y H, et al. Numerical determination of elastic compliance tensor of fractured rock masses by finite element modeling. Int J Rock Mech Min Sci, 2014, 70: 474 doi: 10.1016/j.ijrmms.2014.06.007
    [28] Liang Z Z, Wu N, Li Y C, et al. Numerical study on anisotropy of the representative elementary volume of strength and deformability of jointed rock masses. Rock Mech Rock Eng, 2019, 52(11): 4387 doi: 10.1007/s00603-019-01859-9
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  95
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 网络出版日期:  2021-06-18

目录

    /

    返回文章
    返回