朱维耀, 李华, 邓庆军, 马启鹏, 刘雅静. 多孔介质细观流动理论研究进展[J]. 工程科学学报, 2022, 44(5): 951-962. DOI: 10.13374/j.issn2095-9389.2020.11.30.005
引用本文: 朱维耀, 李华, 邓庆军, 马启鹏, 刘雅静. 多孔介质细观流动理论研究进展[J]. 工程科学学报, 2022, 44(5): 951-962. DOI: 10.13374/j.issn2095-9389.2020.11.30.005
ZHU Wei-yao, LI Hua, DENG Qing-jun, MA Qi-peng, LIU Ya-jing. Review on mesoscopic flow theory in porous media[J]. Chinese Journal of Engineering, 2022, 44(5): 951-962. DOI: 10.13374/j.issn2095-9389.2020.11.30.005
Citation: ZHU Wei-yao, LI Hua, DENG Qing-jun, MA Qi-peng, LIU Ya-jing. Review on mesoscopic flow theory in porous media[J]. Chinese Journal of Engineering, 2022, 44(5): 951-962. DOI: 10.13374/j.issn2095-9389.2020.11.30.005

多孔介质细观流动理论研究进展

Review on mesoscopic flow theory in porous media

  • 摘要: 首先,从理论分析、实验研究和数值模型三个方面概述了当前多孔介质细观流动的研究现状,重点围绕纳微孔隙中流体流动界面作用与细观力学特性关系及表征、细观−宏观网络仿真模拟、细观尺度流体(油/水、气/水)流动细观动力学机制及数学模型等关键问题展开论述。在此基础上介绍了当前细观流动界面作用与细观力学特性研究情况,明确了细观尺度流体非线性流动机理,构建了反映微观力作用下细观尺度流动的数学模型,形成了网络仿真模拟方法。将为非常规油气开发过程中揭示影响流动细观成因,进一步阐明不同条件下的动用机理,确定高效开发方法提供指导,同时促进渗流力学学科的发展,具有重要的理论和现实意义。

     

    Abstract: Porous media are widely found in underground rocks, biomimetic, and engineering materials. However, the current flow theory of fluids (liquid and gas, etc.) is incomplete to study flows in small and complex pores, thus a new theory is urgently needed for studying a large number of fluid flows in porous media. The theory of meso-scale flow in porous media is a “mysterious key” to unlock the flow of nano-micron porous media. At present, a large number of fluid flow problems need an immediate solution in porous media such as shale oil and gas development, soil seepage, human capillary network, and carbon nanotube (CNT). With the advancement of world petroleum engineering technology, unconventional oil and gas reservoirs have become the main areas of development in the petroleum industry. There are a large number of nano-scale pores in unconventional oil and gas reservoirs, and the existing macro-statistical methods of Darcy and non-Darcy percolation cannot reveal the nonlinear flow mechanism and effective production mechanism of fluid in mesopores. Thus, it is urgent to carry out theoretical research on meso-flow in porous media to provide a theoretical basis for unconventional oil and gas development. This paper summarizes the research results in this area, including those of the authors. The current research status of fine and meso flow in porous media is summarized from three aspects: (1) theoretical analysis, (2) experimental research, and (3) numerical model, focusing on key issues such as the relationship and characterization of meso-scale fluid flow interface and micro-mechanical properties, meso–macro network simulation, meso-scale fluid (oil/water, gas/water) flow, meso-dynamic mechanism, and mathematical models. On this basis, the importance of the research on the interface effect and meso-mechanical characteristics of fine and micro-scale fluid flow, the nonlinear flow mechanism of the fine and meso-scale fluids, the construction of a mathematical model reflecting the meso-scale flow under the action of micro-forces, and the formation of a network simulation method are introduced. The study provides certain guiding significance for unconventional oil and gas development processes, revealing the meso-causes affecting flow, clarifying the production mechanism under different conditions, and promoting further development of the discipline of seepage mechanics.

     

/

返回文章
返回