• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用Na2CO3处理铝电解槽炭渣的研究

梁诚 赵润民 彭建平 狄跃忠 王耀武

梁诚, 赵润民, 彭建平, 狄跃忠, 王耀武. 利用Na2CO3处理铝电解槽炭渣的研究[J]. 工程科学学报, 2021, 43(8): 1055-1063. doi: 10.13374/j.issn2095-9389.2020.11.30.007
引用本文: 梁诚, 赵润民, 彭建平, 狄跃忠, 王耀武. 利用Na2CO3处理铝电解槽炭渣的研究[J]. 工程科学学报, 2021, 43(8): 1055-1063. doi: 10.13374/j.issn2095-9389.2020.11.30.007
LIANG Cheng, ZHAO Run-min, PENG Jian-ping, DI Yue-zhong, WANG Yao-wu. Treatment of carbon residue from aluminum electrolysis cell using Na2CO3[J]. Chinese Journal of Engineering, 2021, 43(8): 1055-1063. doi: 10.13374/j.issn2095-9389.2020.11.30.007
Citation: LIANG Cheng, ZHAO Run-min, PENG Jian-ping, DI Yue-zhong, WANG Yao-wu. Treatment of carbon residue from aluminum electrolysis cell using Na2CO3[J]. Chinese Journal of Engineering, 2021, 43(8): 1055-1063. doi: 10.13374/j.issn2095-9389.2020.11.30.007

利用Na2CO3处理铝电解槽炭渣的研究

doi: 10.13374/j.issn2095-9389.2020.11.30.007
基金项目: 国家自然科学基金资助项目(51774080,22078056);国家重点研发计划资助项目(2018YFC1901905)
详细信息
    通讯作者:

    E-mail: pengjp@mail.neu.edu.cn

  • 中图分类号: TF09

Treatment of carbon residue from aluminum electrolysis cell using Na2CO3

More Information
  • 摘要: 铝电解槽炭渣是铝工业冶炼生产过程中产生的一种危险废物。炭渣的大量堆存,在浪费电解质资源的同时,也会造成大气、土壤以及水体的污染。本试验以炭渣为原料,Na2CO3为添加料,对炭渣的焙烧−水浸工艺回收炭粉和冰晶石的可行性与过程进行了研究。试验结果表明,将质量比为2.5∶1的Na2CO3与炭渣混合后置于坩埚电阻炉中,在950 ℃下焙烧2 h,炭渣中氧化铝、冰晶石和亚冰晶石被Na2CO3消耗,焙烧后混合料由C、Na2CO3、NaF、NaAlO2组成。焙烧后混合料在pH为13、浸出温度为25 ℃的条件下浸出1 h,固液分离后的浸出渣经过水洗、烘干后得到炭粉,其纯度可达89%。利用碳酸化法回收浸出液中F,可获得主成分合格的粉状冰晶石。适当地提高焙烧温度和延长保温时间可提高炭和电解质的分离效率。研究经济而有效的炭渣处理方法,不仅可以解决炭渣带来的环境污染问题,还对社会的可持续发展产生深远影响。

     

  • 图  1  样品1的X射线衍射物相分析

    Figure  1.  X-ray diffraction phase analysis of sample 1

    图  2  样品1的SEM-EDS图

    Figure  2.  SEM-EDS images of sample 1

    图  3  炭渣焙烧−水浸试验流程图

    Figure  3.  Flow chart of carbon residue roasting−water immersion test

    图  4  炭渣焙烧−水浸试验原理图

    Figure  4.  Principle diagram of carbon residue roasting−water immersion test

    图  5  焙烧试验主要反应热力学计算曲线

    Figure  5.  Main reaction thermodynamic calculation curve of roasting test

    图  6  焙烧混合料的X射线衍射物相分析

    Figure  6.  X-ray diffraction phase analysis of roasted mixture

    图  7  炭渣(a)和焙烧混合料(b)的SEM-EDS图

    Figure  7.  SEM-EDS mapping of carbon residue (a) and roasted mixture (b)

    图  8  不同温度下Al−H2O 的E−pH图。(a)25 ℃;(b)50 ℃;(c)75 ℃;(d)100 ℃

    Figure  8.  E−pH diagram of Al−H2O at different temperatures: (a) 25 ℃; (b) 50 ℃; (c) 75 ℃; (d) 100 ℃

    图  9  950 ℃时保温时间与混合料质量损失的关系

    Figure  9.  Relationship between the holding time and mass loss of the mixture at 950 ℃

    a—m[Na2CO3]=7.5 g, m[carbon residue]=3 g; b—m[Na2CO3]=7 g, m[carbon residue]=3.5 g; c—m[Na2CO3]=5.25 g, m[carbon residue]=5.25 g

    图  10  焙烧2 h时焙烧温度与混合料的质量损失的关系

    Figure  10.  Relationship between the roasting temperature and mass loss of the mixture at 2 h roasting

    a—m[Na2CO3]=7.5 g, m[carbon residue]=3 g; b—m[Na2CO3]=7 g, m[carbon residue]=3.5 g; c—m[Na2CO3]=5.25 g; m[carbon residue]=5.25 g

    图  11  浸出时间与炭粉纯度的关系

    Figure  11.  Relationship between leaching time and carbon powder purity

    图  12  试验Ⅶ(a)和Ⅷ(b)所得炭粉的X射线衍射物相分析

    Figure  12.  X-ray diffraction phase analysis of carbon powder obtained in Ⅶ(a) and Ⅷ(b)

    图  13  试验Ⅷ所得冰晶石的X射线衍射物相分析

    Figure  13.  X-ray diffraction phase analysis of cryolite obtained in Experiment Ⅷ

    图  14  试验Ⅷ所得炭粉(a, b)和冰晶石(c, d)的SEM图

    Figure  14.  SEM images of carbon powder (a, b) and cryolite (c, d) obtained from test Ⅷ

    表  1  炭渣主要成分(质量分数)

    Table  1.   Main components of carbon residue %

    Sample
    number
    CNaAlFOKLiMgCaTotal
    Sample 130.116.5311.6933.550.110.0020.31.1493.422
    Sample 229.216.6710.9234.70.10.0020.331.2193.132
    下载: 导出CSV

    表  2  炭渣焙烧试验参数及炭粉产物纯度

    Table  2.   Roasting test parameters of carbon residue and purity of carbon powder

    TestComponentsRoasting temperature/
    Holding time/
    h
    The quality of carbon
    powder/g
    Purity of carbon powder/
    %
    Exp. Ⅰm[carbon residue] = 10 g, m[Na2CO3] = 25 g80015.5155
    Exp. Ⅱm[carbon residue] = 10 g, m[Na2CO3] = 25 g85015.2856
    Exp. Ⅲm[carbon residue] = 10 g, m[Na2CO3] = 25 g9000.53.9970
    Exp. Ⅳm[carbon residue] = 10 g, m[Na2CO3] = 25 g90013.6972
    Exp. Ⅴm[carbon residue] = 10 g, m[Na2CO3] = 25 g9001.53.7173
    Exp. Ⅵm[carbon residue] = 10 g, m[Na2CO3] = 25 g90023.5276
    Exp. Ⅶm[carbon residue] = 10 g, m[Na2CO3] = 25 g95013.4884
    Exp. Ⅷm[carbon residue] = 10 g, m[Na2CO3] = 25 g95022.9589
    下载: 导出CSV
  • [1] Grjothem K, Welch B J. Aluminium smelter technology. Dusseldorf: Aluminium-Verlag, 1980
    [2] Xu H F, Fan L J, Zhang Y, et al. Analysis of sources of carbon residue and its control methods. Carbon Tech, 2009, 28(6): 41 doi: 10.3969/j.issn.1001-3741.2009.06.009

    许海飞, 樊利军, 张阳, 等. 炭渣来源及其控制方法分析. 炭素技术, 2009, 28(6):41 doi: 10.3969/j.issn.1001-3741.2009.06.009
    [3] Hume S M, Utley M R, Welch B J. The influence of low current densities on anode performance. Light Metals. 1992: 687
    [4] Zhao D F, Yang Y Z. Analysis on the harmfulness of carbon slag in aluminum electrolysis production. Sci Technol Innov Her, 2013, 10(10): 154 doi: 10.3969/j.issn.1674-098X.2013.10.100

    赵东方, 杨玉卓. 探析铝电解生产中碳渣的危害性. 科技创新导报, 2013, 10(10):154 doi: 10.3969/j.issn.1674-098X.2013.10.100
    [5] Zhang B S. The harm of carbon slag in aluminum electrolysis production. Xinjiang Nonferrous Metals, 2013, 36(1): 70

    张保社. 碳渣在铝电解生产中的危害. 新疆有色金属, 2013, 36(1):70
    [6] Li C Z. Causes of carbon slag formation in aluminum electrolysis production and its treatment methods. Qinghai Sci Technol, 2008, 15(4): 74 doi: 10.3969/j.issn.1005-9393.2008.04.032

    李长珍. 铝电解生产中炭渣生成的原因及其处理方法. 青海科技, 2008, 15(4):74 doi: 10.3969/j.issn.1005-9393.2008.04.032
    [7] Wen L G, Sun H L, Li J Y. Synthetic analysis of the recovery and utilization for carbon slag from aluminium electrolysis in Qingtongxia aluminum plant in Ningxia. Inn Mong Petrochem Ind, 2019, 45(6): 13 doi: 10.3969/j.issn.1006-7981.2019.06.005

    温铝刚, 孙海璐, 李京彦. 宁夏青铜峡铝厂铝电解炭渣回收利用综合分析. 内蒙古石油化工, 2019, 45(6):13 doi: 10.3969/j.issn.1006-7981.2019.06.005
    [8] Lu H M, Qiu Z X. Comprehensive utilization of carbonaceous slag from aluminium reduction cells. Multipurp Util Miner Resour, 1997(2): 45

    卢惠民, 邱竹贤. 铝电解槽炭渣的综合利用研究. 矿产综合利用, 1997(2):45
    [9] Liu Y Q, Ji F W. Hazard analysis and control of carbon slag in aluminum electrolysis production. World Nonferrous Met, 2013(12): 30

    刘永强, 姬凤武. 铝电解生产中炭渣的危害分析与控制. 世界有色金属, 2013(12):30
    [10] Huang Y K, Xiao H Z, Peng D Q. Formation and distribution of carbon slag in aluminum electrolyte melt and its separation measures. Light Met, 1994(10): 23

    黄英科, 肖辉照, 彭德泉. 铝电解质熔液中碳渣的形成和分布及其分离措施. 轻金属, 1994(10):23
    [11] Jin R Y, Wang Y M. The cause of carbon residue increase in aluminum plant and its prevention. Shanghai Met (Nonferrous Fascicule), 1992, 13(4): 54

    金瑞玉, 王玉明. 铝厂碳渣增多的原因及其预防. 上海金属(有色分册), 1992, 13(4):54
    [12] Xie Y M. Impact of carbon residue to the aluminum electrolysis production. Gansu Metall, 2014, 36(4): 32 doi: 10.3969/j.issn.1672-4461.2014.04.010

    谢叶明. 碳渣对铝电解生产的影响. 甘肃冶金, 2014, 36(4):32 doi: 10.3969/j.issn.1672-4461.2014.04.010
    [13] Peng J P, Liang C, Di Y Z, et al. Method for Treating Anode Carbon Residue of Aluminum Electrolytic Cell by Using NaCl Molten Salt Extraction Method: China Patent, CN110938838A. 2020-3-31

    彭建平, 梁诚, 狄跃忠, 等. 利用NaCl熔盐萃取法处理铝电解槽阳极炭渣的方法: 中国专利, CN110938838A. 2020-3-31
    [14] Peng J P, Liang C, Wei Z, et al. Method for Treating Anode Carbon Residue of Aluminum Electrolytic Cell by Using NaOH Molten Salt Method: China Patent, CN110775955A. 2020-2-11

    彭建平, 梁诚, 魏征, 等. 一种利用NaOH熔盐法处理铝电解槽阳极炭渣的方法: 中国专利, CN110775955A. 2020-2-11
    [15] Zhao R M, Yu Z L, Li S H. The recycling experimental study on aluminum electrolysis carbon residues. Yunnan Metall, 2015, 44(1): 15 doi: 10.3969/j.issn.1006-0308.2015.01.004

    赵瑞敏, 于站良, 李顺华. 铝电解炭渣回收利用实验研究. 云南冶金, 2015, 44(1):15 doi: 10.3969/j.issn.1006-0308.2015.01.004
    [16] Kang N. Flotation of aluminum electrolytic carbon slag. Light Met, 2002(6): 42 doi: 10.3969/j.issn.1002-1752.2002.06.012

    康宁. 铝电解碳渣的浮选. 轻金属, 2002(6):42 doi: 10.3969/j.issn.1002-1752.2002.06.012
    [17] Xue W Q, Hou X. Recycling and utilizing technology on aluminium electrolytic carbon dross. World Nonferrous Met, 2002(8): 35

    薛伍芹, 侯新. 铝电解炭渣回收利用技术. 世界有色金属, 2002(8):35
    [18] Mei X Y, Li J, Yu Z L. The research on recycling carbon residue by Floatation process. Light Met, 2016(4): 28

    梅向阳, 李俊, 于站良. 浮选法回收利用碳渣实验研究. 轻金属, 2016(4):28
    [19] Chai D P, Hou G H, Huang H B. Experimental study on the treatment of aluminum reduction carbon residue by vacuum metallurgy. Light Met, 2016(4): 25

    柴登鹏, 候光辉, 黄海波. 真空冶金法处理铝电解碳渣试验研究. 轻金属, 2016(4):25
    [20] Feng N X, Wang Y W. Method for Separating and Recovering carbon and Electrolyte Components from Carbon-containing Solid Waste Material of Molten Aluminum Electrolysis: China Patent, CN104894600A. 2015-9-9

    冯乃祥, 王耀武. 一种从铝熔盐电解含炭固体废料中分离回收炭和电解质组分的方法: 中国专利, CN104894600A. 2015-9-9
    [21] Chen X P, Zhao L, Luo Z S. Study on recycling process for electrolyte in carbon dust from reduction cells. Light Met, 2009(12): 21

    陈喜平, 赵淋, 罗钟生. 回收铝电解炭渣中电解质的研究. 轻金属, 2009(12):21
    [22] Chen X P, Li W X, Wang Y. Method for Extracting Electrolyte from Carbon Slag of Aluminum Electrolysis Anode: China Patent, CN101063215A. 2007-10-31

    陈喜平, 李旺兴, 王玉. 一种提取铝电解阳极碳渣中电解质的方法: 中国专利, CN101063215A. 2007-10-31
    [23] Li W X, Chen X P, Liu F Q, et al. Process for Recovering Fluoride Salt from Aluminium Electrolyzing Carbon Slag: China Patent, CN1587028A. 2005-3-2

    李旺兴, 陈喜平, 刘凤琴, 等. 一种回收铝电解阳极碳渣中氟化盐的方法: 中国专利, CN1587028A. 2005-3-2
    [24] Li M J, Shi Z H, Zheng C F, et al. Investigation into direct synthesizing cryolite by sodium aluminate. Conserv Util Miner Resour, 2008(4): 36 doi: 10.3969/j.issn.1001-0076.2008.04.010

    李民菁, 史智慧, 郑朝付, 等. 铝酸钠溶液直接合成冰晶石的研究. 矿产保护与利用, 2008(4):36 doi: 10.3969/j.issn.1001-0076.2008.04.010
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  92
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-30
  • 网络出版日期:  2021-03-13
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回