• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳热焙烧还原砷酸钙制备金属砷

熊民 史冠勇 田磊 刘重伟 曹才放 张志辉 徐志峰

熊民, 史冠勇, 田磊, 刘重伟, 曹才放, 张志辉, 徐志峰. 碳热焙烧还原砷酸钙制备金属砷[J]. 工程科学学报, 2022, 44(5): 886-893. doi: 10.13374/j.issn2095-9389.2020.12.14.002
引用本文: 熊民, 史冠勇, 田磊, 刘重伟, 曹才放, 张志辉, 徐志峰. 碳热焙烧还原砷酸钙制备金属砷[J]. 工程科学学报, 2022, 44(5): 886-893. doi: 10.13374/j.issn2095-9389.2020.12.14.002
XIONG Min, SHI Guan-yong, TIAN Lei, LIU Chong-wei, CAO Cai-fang, ZHANG Zhi-hui, XU Zhi-feng. Preparation of metallic arsenic from calcium arsenate by carbon thermal roasting reduction[J]. Chinese Journal of Engineering, 2022, 44(5): 886-893. doi: 10.13374/j.issn2095-9389.2020.12.14.002
Citation: XIONG Min, SHI Guan-yong, TIAN Lei, LIU Chong-wei, CAO Cai-fang, ZHANG Zhi-hui, XU Zhi-feng. Preparation of metallic arsenic from calcium arsenate by carbon thermal roasting reduction[J]. Chinese Journal of Engineering, 2022, 44(5): 886-893. doi: 10.13374/j.issn2095-9389.2020.12.14.002

碳热焙烧还原砷酸钙制备金属砷

doi: 10.13374/j.issn2095-9389.2020.12.14.002
基金项目: 国家重点研发计划资助项目(2019YFC1907405);国家自然科学基金资助项目(52064021,52074136);中国博士后科学基金资助项目(2019T120625,2019M652276);江西省杰出青年科学基金资助项目(20202ACB213002);江西省博士后择优资助项目(2019KY09);江西省重点研发计划资助项目(20192ACB70017);江西省主要学科学术与技术带头人-青年人才培养计划资助项目(20204BCJL23031)
详细信息
    通讯作者:

    E-mail:xzf_1@163.com

  • 中图分类号: TQ126.4

Preparation of metallic arsenic from calcium arsenate by carbon thermal roasting reduction

More Information
  • 摘要: 致力于碳热焙烧还原砷酸钙制备具有商业价值的金属单质砷,为推进砷危废物无害化处理向砷资源化回收利用前进展开科学研究。其中热重分析表明,砷酸钙与碳粉混合热解的质量损失分为3个阶段,阶段1和阶段2为失水过程,阶段3为碳还原砷酸钙生成CaO和砷蒸气过程。且研究发现,可以利用相边界反应动力学模型解释阶段3反应机制。而单因素条件实验结果表明:在温度1000 ℃、碳配入系数1.4、恒温时长60 min条件下砷挥发率高达99.94%。X射线衍射仪(XRD)、扫描电镜能谱仪(SEM‒EDS)对反应体系中有关产物表征表明,较优条件下产品砷主要为片状金属砷和粉末非晶体砷,焙烧残渣为CaO。

     

  • 图  1  实验合成砷酸钙X射线衍射图谱

    Figure  1.  XRD pattern of experimentally synthesized calcium arsenate

    图  2  实验装置

    Figure  2.  Experimental setup

    图  3  砷酸钙与碳粉混合热解特性。(a)砷酸钙与碳粉混合热解的热重‒热重微商曲线;(b)残渣X射线衍射图(Ⅰ原物料;Ⅱ第1质量损失阶段,320 ℃;Ⅲ第2质量损失阶段,700 ℃;Ⅳ第3质量损失阶段,1000 ℃)

    Figure  3.  Pyrolysis characteristics of calcium arsenate mixed with carbon powder: (a) TG‒DTG curves of the pyrolysis of calcium arsenate mixed with carbon powder; (b) XRD plots of the residue (Ⅰ raw material; Ⅱfirst mass loss stage, 320 ℃; Ⅲ second mass loss stage, 700 ℃; Ⅳ third mass loss stage, 1000 ℃)

    图  4  第3个质量损失阶段动力学模型拟合结果。(a)三维扩散;(b)相边界反应;(c)相边界反应模型结果验算

    Figure  4.  Results of the third weightless phase kinetic model fitting: (a) 3D diffusion; (b) phase boundary reaction; (c) phase boundary reaction model result verification

    图  5  焙烧温度对砷挥发影响图

    Figure  5.  Diagram showing the effect of roasting temperature on arsenic volatilization

    图  6  碳配入系数对砷挥发率的影响图

    Figure  6.  Plot of the effect of the carbon incorporation factor on the volatility of arsenic

    图  7  保温时间对砷挥发率的影响

    Figure  7.  Effect of the holding time on the volatility of arsenic

    图  8  产品砷扫描电镜和X射线衍射图谱。(a~c)不同放大倍数金属片砷;(d)粗糙反面金属片砷;(e)粉末不定型砷;(f)光泽正面金属片砷;(g) 产品砷X射线衍射图

    Figure  8.  Arsenic product SEM, XRD patterns: (a‒c) metal flake arsenic with different magnification; (d) rough back side of the metal flake arsenic; (e) powdered unshaped arsenic; (f) glossy front side of the metal flake arsenic; (g) XRD of arsenic product

    表  1  合成砷酸钙的主要成分(质量分数)

    Table  1.   Main components of synthetic calcium arsenate %

    CaAsOOther
    19.8131.4338.4110.35
    下载: 导出CSV

    表  2  动力学机理函数

    Table  2.   Kinetic mechanism function

    Function numberFunction nameMechanismPoints form G(α)
    1Ginstling‒
    Brounshteine
    equation
    Three-dimensional diffusion$ 1-\dfrac{2}{3}\alpha -(1-\alpha {)}^{\frac{2}{3}} $
    2Shrink globularPhase boundary reaction$ 1-(1-\alpha {)}^{\frac{1}{3}} $
    下载: 导出CSV

    表  3  金属砷的扫描电镜能谱分析结果(质量分数)

    Table  3.   Results of EDS analysis of arsenic metal %

    numberOAs
    11.1698.84
    20.8599.15
    32.4497.55
    423.3576.65
    50.7299.28
    60.9299.08
    71.6398.37
    81.1498.86
    100.4899.52
    111.3298.68
    120.3899.62
    下载: 导出CSV
  • [1] Jr J V B, Brown P W. The stabilities of calcium arsenates at 23±1 ℃. J Hazard Mater, 1999, 69(2): 197 doi: 10.1016/S0304-3894(99)00105-3
    [2] Long G, Peng Y J, Bradshaw D. A review of copper-arsenic mineral removal from copper concentrates. Miner Eng, 2012, 36-38: 179 doi: 10.1016/j.mineng.2012.03.032
    [3] Lee P K, Yu S, Jeong Y J, et al. Source identification of arsenic contamination in agricultural soils surrounding a closed Cu smelter, South Korea. Chemosphere, 2019, 217: 183 doi: 10.1016/j.chemosphere.2018.11.010
    [4] Leist M, Casey R J, Caridi D. The fixation and leaching of cement stabilized arsenic. Waste Manag, 2003, 23(4): 353 doi: 10.1016/S0956-053X(02)00116-2
    [5] Yuan Y F, Liu S H. Distribution and removal of arsenic in the process of bottom-blowing continuous copper smelting. China Nonferrous Metall, 2020, 49(2): 37

    袁永锋, 刘素红. 底吹连续炼铜过程中砷的走向及控制. 中国有色冶金, 2020, 49(2):37
    [6] Jia H. Recycling and Comprehensive Utilization of Metallurgical Waste with High Arsenic Content [Dissertation]. Changsha: Central South University, 2013

    贾海. 高砷冶金废料的回收与综合利用[学位论文]. 长沙: 中南大学, 2013
    [7] Liu G, Shi Y, Guo G L, et al. Soil pollution characteristics and systemic environmental risk assessment of a large-scale arsenic slag contaminated site. J Clean Prod, 2020, 251: 119721 doi: 10.1016/j.jclepro.2019.119721
    [8] Dutré V, Vandecasteele C. Solidification/stabilisation of arsenic-containing waste: Leach tests and behaviour of arsenic in the leachate. Waste Manag, 1995, 15(1): 55 doi: 10.1016/0956-053X(95)00002-H
    [9] Dutré V, Vandecasteele C. Solidification/stabilisation of hazardous arsenic containing waste from a copper refining process. J Hazard Mater, 1995, 40(1): 55 doi: 10.1016/0304-3894(94)00080-Z
    [10] Dutré V, Vandecasteele C. An evaluation of the solidification/stabilisation of industrial arsenic containing waste using extraction and semi-dynamic leach tests. Waste Manag, 1996, 16(7): 625 doi: 10.1016/S0956-053X(97)00003-2
    [11] Vandecasteele C, Dutré V, Geysen D, et al. Solidification/stabilisation of arsenic bearing fly ash from the metallurgical industry. Immobilisation mechanism of arsenic. Waste Manag, 2002, 22(2): 143
    [12] Choi W H, Lee S R, Park J Y. Cement based solidification/stabilization of arsenic-contaminated mine tailings. Waste Manag, 2009, 29(5): 1766 doi: 10.1016/j.wasman.2008.11.008
    [13] Akhter H, Cartledge F K, Roy A, et al. Solidification/stabilization of arsenic salts: Effects of long cure times. J Hazard Mater, 1997, 52(2-3): 247 doi: 10.1016/S0304-3894(96)01811-0
    [14] Singh T S, Pant K K. Solidification/stabilization of arsenic containing solid wastes using Portland cement, fly ash and polymeric materials. J Hazard Mater, 2006, 131(1-3): 29 doi: 10.1016/j.jhazmat.2005.06.046
    [15] Yoon I H, Moon D H, Kim K W, et al. Mechanism for the stabilization/solidification of arsenic-contaminated soils with Portland cement and cement kiln dust. J Environ Manag, 2010, 91(11): 2322 doi: 10.1016/j.jenvman.2010.06.018
    [16] Zhao Z W, Song Y X, Min X B, et al. XPS and FTIR studies of sodium arsenate vitrification by cullet. J Non Cryst Solids, 2016, 452: 238 doi: 10.1016/j.jnoncrysol.2016.08.028
    [17] Zhao Z W, Chai L Y, Peng B, et al. Arsenic vitrification by copper slag based glass: Mechanism and stability studies. J Non Cryst Solids, 2017, 466-467: 21 doi: 10.1016/j.jnoncrysol.2017.03.039
    [18] Xu J B, Shen Q H, Chen W, et al. The present situation and the countermeasure of the processing of arsenic residues. Min Metall, 2017, 26(3): 82 doi: 10.3969/j.issn.1005-7854.2017.03.018

    徐建兵, 沈强华, 陈雯, 等. 含砷废渣处理现状及对策. 矿冶, 2017, 26(3):82 doi: 10.3969/j.issn.1005-7854.2017.03.018
    [19] Lu X Y. The status quo and progress of arsenic-containing waste residue treatment technology. Mod Salt Chem Ind, 2018, 45(5): 87 doi: 10.3969/j.issn.1005-880X.2018.05.041

    陆晓阳. 含砷废渣处理技术的现状与进展. 现代盐化工, 2018, 45(5):87 doi: 10.3969/j.issn.1005-880X.2018.05.041
    [20] Lu H B. Thermodynamic analysis on crude metal arsenic preparation by arsenic trioxide carbothermic reduction in vacuum. Nonferrous Met (Extr Metall), 2012(10): 55

    卢红波. As2O3真空碳热还原制备粗金属砷的热力学研究. 有色金属(冶炼部分), 2012(10):55
    [21] Li X P. Experiment study on arsenic preparation by dc furnace. Min Metall, 2012, 21(3): 56 doi: 10.3969/j.issn.1005-7854.2012.03.015

    李学鹏. 直流电弧炉制备金属砷试验研究. 矿冶, 2012, 21(3):56 doi: 10.3969/j.issn.1005-7854.2012.03.015
    [22] Pan C F. An effective way to improve the quality of metallic arsenic. Nonferrous Met (Extr Metall), 1994(2): 32

    潘崇发. 提高金属砷质量的有效途径. 有色金属(冶炼部分), 1994(2):32
    [23] Huang Z L, Liu Y Y, Tao Q Y, et al. Influencing factors of arsenic removal by lime precipitation. Chin J Environ Eng, 2012, 6(3): 734

    黄自力, 刘缘缘, 陶青英, 等. 石灰沉淀法除砷的影响因素. 环境工程学报, 2012, 6(3):734
    [24] Zhang H. Study on the solubility and stability of calcium arsenate [Dissertation]. Guilin: Guilin Institute of Technology, 2005

    张华. 砷酸钙盐的溶解度和稳定性研究[学位论文]. 桂林: 桂林工学院, 2005
    [25] Liu H L, Zhu Y N. Thermodynamic analysis of the CO2 effects on the stability of calcium arsenates. Environ Prot Sci, 2006, 32(3): 7 doi: 10.3969/j.issn.1004-6216.2006.03.003

    刘辉利, 朱义年. CO2对砷酸钙稳定性影响的热力学分析. 环境保护科学, 2006, 32(3):7 doi: 10.3969/j.issn.1004-6216.2006.03.003
    [26] Bothe J V, Brown P W. Arsenic immobilization by calcium arsenate formation. Environ Sci Technol, 1999, 33(21): 3806 doi: 10.1021/es980998m
    [27] Wang G, Xue Q G, Shen Y F, et al. Carbothermic reduction kinetics of boron-bearing iron concentrate. Chin J Eng, 2016, 38(5): 623

    王广, 薛庆国, 沈颖峰, 等. 硼铁精矿的碳热还原动力学. 工程科学学报, 2016, 38(5):623
    [28] Hu R Z, Gao S L, Zhao F Q. Thermal Analysis Kinetics. 2nd ed. Beijing: Science Press, 2008: 20

    胡荣祖, 高胜利, 赵凤起. 热分析动力学. 2版. 北京: 科学出版社, 2008: 20
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  363
  • HTML全文浏览量:  259
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-14
  • 网络出版日期:  2021-03-13
  • 刊出日期:  2022-05-05

目录

    /

    返回文章
    返回