• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

前驱体烘干温度对富锂锰基正极材料形貌和电化学性能的影响

杨震 厉英 马培华

杨震, 厉英, 马培华. 前驱体烘干温度对富锂锰基正极材料形貌和电化学性能的影响[J]. 工程科学学报, 2021, 43(8): 1019-1023. doi: 10.13374/j.issn2095-9389.2020.12.31.007
引用本文: 杨震, 厉英, 马培华. 前驱体烘干温度对富锂锰基正极材料形貌和电化学性能的影响[J]. 工程科学学报, 2021, 43(8): 1019-1023. doi: 10.13374/j.issn2095-9389.2020.12.31.007
YANG Zhen, LI Ying, MA Pei-hua. Effect of precursor drying temperature on the morphology and electrochemical performance of lithium-rich manganese-based cathode materials[J]. Chinese Journal of Engineering, 2021, 43(8): 1019-1023. doi: 10.13374/j.issn2095-9389.2020.12.31.007
Citation: YANG Zhen, LI Ying, MA Pei-hua. Effect of precursor drying temperature on the morphology and electrochemical performance of lithium-rich manganese-based cathode materials[J]. Chinese Journal of Engineering, 2021, 43(8): 1019-1023. doi: 10.13374/j.issn2095-9389.2020.12.31.007

前驱体烘干温度对富锂锰基正极材料形貌和电化学性能的影响

doi: 10.13374/j.issn2095-9389.2020.12.31.007
基金项目: 国家自然科学基金资助项目(51834004,51774076,51474057,51904068)
详细信息
    通讯作者:

    E-mail: liying@mail.neu.edu.cn

  • 中图分类号: TM912.9

Effect of precursor drying temperature on the morphology and electrochemical performance of lithium-rich manganese-based cathode materials

More Information
  • 摘要: 以过渡金属硫酸盐、氢氧化钠、氨水为原料,通过连续共沉淀–高温固相法制备了富锂锰基正极材料Li1.17Ni0.33Mn0.5O2。对其进行了包括微观形貌、宏观形貌、晶体结构、电化学性能等方面的表征,研究了前驱体烘干温度对于粒度较小前驱体的宏观形貌及锂化后正极材料的微观形貌和电化学性能的影响。结果表明,烘干温度较高的前驱体在烘干后出现了明显了宏观烧结现象,锂化并涂布后出现了明显的颗粒;烘干温度较低的前驱体在烘干后并未出现宏观烧结现象,锂化并涂布后未出现明显的颗粒。在电化学性能方面,前驱体烘干温度较高的正极材料在经历50个循环后,可逆比容量只剩下85%,下降比较明显;前驱体烘干温度较低的正极材料在经历了50个循环后,可逆比容量未出现明显下降。

     

  • 图  1  LLO1和LLO2前驱体及正极材料涂布后宏观形貌。(a)LLO1前驱体;(b)LLO2前躯体;(c)LLO1正极材料;(d)LLO2正极材料

    Figure  1.  Macro morphology of precursor and cathode materials: (a) precursor of LLO1; (b) precursor of LLO2; (c) cathode material of LLO1; (d) cathode material of LLO2

    图  2  存在大颗粒的样品辊压后宏观形貌

    Figure  2.  Macroscopic morphology of samples with large particles after rolling

    图  3  LLO1(a)和LLO2(b)样品的微观形貌

    Figure  3.  Electron microprobe images of LLO1 sample (a) and LLO2 sample (b)

    图  4  LLO1(a)和LLO2(b)样品XRD图及精修后图谱

    Figure  4.  XRD pattern and Rietveld refinement results of LLO1 sample (a) and LLO2 sample (b)

    图  5  LLO1和LLO2的倍率(a)及循环性能(b)

    Figure  5.  Rate capacity (a) and cycling capacity (b) of LLO1 and LLO2

    表  1  不同样品的Rietveld精修结果表

    Table  1.   Summary of Rietveld refinement results

    Samplea/nmc/nmI(003)/I(104)NiLiBragg RRpRwpχ2
    LLO10.286691.425662.012.87%0.771.962.791.748
    LLO20.286421.423822.403.04%1.022.152.981.795
    下载: 导出CSV
  • [1] Guo H. Recent development of lithium-rich layered oxides. Chin J Power Sources, 2018, 42(11): 1736 doi: 10.3969/j.issn.1002-087X.2018.11.045

    郭慧. 层状富锂材料研究进展. 电源技术, 2018, 42(11):1736 doi: 10.3969/j.issn.1002-087X.2018.11.045
    [2] Chen Y F, Li Y J, Zheng C M, et al. Research development on lithium rich layered oxide cathode materials. J Inorg Mater, 2017, 32(8): 792 doi: 10.15541/jim20160563

    陈宇方, 李宇杰, 郑春满, 等. 富锂层状氧化物正极材料研究进展. 无机材料学报, 2017, 32(8):792 doi: 10.15541/jim20160563
    [3] Wu Y F, Bai L F, Wang P F, et al. Research progress of cathode materials for Li-ion battery. Chin J Power Sources, 2019, 43(9): 1547 doi: 10.3969/j.issn.1002-087X.2019.09.038

    吴怡芳, 白利锋, 王鹏飞, 等. 锂离子电池正极材料研究. 电源技术, 2019, 43(9):1547 doi: 10.3969/j.issn.1002-087X.2019.09.038
    [4] Zhang N, Li J, Li H Y, et al. Structural, electrochemical, and thermal properties of nickel-rich LiNixMnyCozO2 materials. Chem Mater, 2018, 30(24): 8852 doi: 10.1021/acs.chemmater.8b03827
    [5] Li J W, Li Y, Guo Y N, et al. A facile method to enhance electrochemical performance of high-nickel cathode material Li(Ni0.8Co0.1Mn0.1)O2 via Ti doping. J Mater Sci:Mater Electron, 2018, 29(13): 10702 doi: 10.1007/s10854-018-9093-1
    [6] Li J W, Li Y, Yi W T, et al. Improved electrochemical performance of cathode material LiNi0.8Co0.1Mn0.1O2 by doping magnesium via co-precipitation method. J Mater Sci:Mater Electron, 2019, 30(8): 7490 doi: 10.1007/s10854-019-01062-0
    [7] Li J W, Li Y, Ma P H. A facile method to improve electrochemical performances of nickel-rich cathode material Li(Ni0.6Co0.2Mn0.2)O2 by blending with solid electrolyte. Mater Res Express, 2019, 6(6): 066314 doi: 10.1088/2053-1591/ab1044
    [8] Ashraf N, Isa khan M, Majid A, et al. A review of the interfacial properties of 2-D materials for energy storage and sensor applications. Chin J Phys, 2020, 66: 246 doi: 10.1016/j.cjph.2020.03.035
    [9] Shunmugasundaram R, Senthil Arumugam R, Dahn J R. High capacity Li-rich positive electrode materials with reduced first-cycle irreversible capacity loss. Chem Mater, 2015, 27(3): 757 doi: 10.1021/cm504583y
    [10] Manthiram A, Knight J C, Myung S T, et al. Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives. Adv Energy Mater, 2016, 6(1): 1501010 doi: 10.1002/aenm.201501010
    [11] Liu L H, Li M C, Chu L H, et al. Layered ternary metal oxides: Performance degradation mechanisms as cathodes, and design strategies for high-performance batteries. Prog Mater Sci, 2020, 111: 100655 doi: 10.1016/j.pmatsci.2020.100655
    [12] Zhang K, Li B, Zuo Y X, et al. Voltage decay in layered Li-rich Mn-based cathode materials. Electrochem Energy Rev, 2019, 2(4): 606 doi: 10.1007/s41918-019-00049-z
    [13] Zuo Y X, Li B, Jiang N, et al. A high-capacity O2-Type Li-rich cathode material with a single-layer Li2MnO3 superstructure. Adv Mater, 2018, 30(16): 1707255 doi: 10.1002/adma.201707255
    [14] Zhang N, Li Y. Lithium-rich layered oxides as cathode materials: Structures, capacity origin mechanisms and modifications. Prog Chem, 2017, 29(4): 373 doi: 10.7536/PC161019

    张宁, 厉英. 富锂层状氧化物正极材料: 结构、容量产生机理及改性. 化学进展, 2017, 29(4):373 doi: 10.7536/PC161019
    [15] Jiang W J, Zhang C X, Feng Y Z, et al. Achieving high structure and voltage stability in cobalt-free Li-rich layered oxide cathodes via selective dual-cation doping. Energy Storage Mater, 2020, 32: 37 doi: 10.1016/j.ensm.2020.07.035
    [16] Zhang C X, Feng Y Z, Wei B, et al. Heteroepitaxial oxygen-buffering interface enables a highly stable cobalt-free Li-rich layered oxide cathode. Nano Energy, 2020, 75: 104995 doi: 10.1016/j.nanoen.2020.104995
    [17] Xie D J, Li G S, Li Q, et al. Improved cycling stability of cobalt-free Li-rich oxides with a stable interface by dual doping. Electrochimica Acta, 2016, 196: 505 doi: 10.1016/j.electacta.2016.02.210
    [18] Eum D, Kim B, Kim S J, et al. Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes. Nat Mater, 2020, 19(4): 419 doi: 10.1038/s41563-019-0572-4
    [19] Chen G R, An J, Meng Y M, et al. Cation and anion Co-doping synergy to improve structural stability of Li- and Mn-rich layered cathode materials for lithium-ion batteries. Nano Energy, 2019, 57: 157 doi: 10.1016/j.nanoen.2018.12.049
    [20] Yi T F, Han X, Yang S Y, et al. Enhanced electrochemical performance of Li-rich low-Co Li1.2Mn0.56Ni0.16Co0.08−xAlxO2 (0≤x≤0.08) as cathode materials. Sci China Mater, 2016, 59(8): 618 doi: 10.1007/s40843-016-5097-7
    [21] Ye D L, Wang B, Chen Y, et al. Understanding the stepwise capacity increase of high energy low-Co Li-rich cathode materials for lithium ion batteries. J Mater Chem A, 2014, 2(44): 18767 doi: 10.1039/C4TA03692A
    [22] Zhang N, Zaker N, Li H Y, et al. Cobalt-free nickel-rich positive electrode materials with a core–shell structure. Chem Mater, 2019, 31(24): 10150 doi: 10.1021/acs.chemmater.9b03515
    [23] Zhou F, Zhao X M, van Bommel A, et al. Coprecipitation synthesis of NixMn1−x(OH)2 mixed hydroxides. Chem Mater, 2010, 22(3): 1015 doi: 10.1021/cm9018309
    [24] Zeng Y, Wu W, Gao J H. The Basis and Application of Scanning Electron Microscope and Electron Probe. Shanghai: Shanghai Scientific & Technical Publishers, 2009

    曾毅, 吴伟, 高建华. 扫描电镜和电子探针的基础及应用. 上海: 上海科学技术出版社, 2009
    [25] Zheng Z H, Li Q. Refinement of X-ray Polycrystalline Diffraction Data RIETVELD and Introduction to GSAS Software. Beijing: Chinese Building Materials Industry Publication, 2016

    郑振环, 李强. X射线多晶衍射数据RIETVELD精修及GSAS软件入门. 北京: 中国建材工业出版社, 2016
    [26] Jiang C H, Yang C Z. X-ray Diffraction Technology and Its Applications. Shanghai: East China University of Science and Technology Press, 2010

    姜传海, 杨传铮. X射线衍射技术及其应用. 上海: 华东理工大学出版社, 2010
    [27] Wang Q Y, Chu G, Zhang J N, et al. The assembly, charge-discharge performance measurement and data analysis of lithium-ion button cell. Energy Storage Sci Technol, 2018, 7(2): 327

    王其钰, 褚赓, 张杰男, 等. 锂离子扣式电池的组装, 充放电测量和数据分析. 储能科学与技术, 2018, 7(2):327
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  35
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 网络出版日期:  2021-07-02
  • 刊出日期:  2021-08-25

目录

    /

    返回文章
    返回