• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于连续反演算法的时滞补偿控制综述

马永浩 张爽 何修宇 刘志杰

马永浩, 张爽, 何修宇, 刘志杰. 基于连续反演算法的时滞补偿控制综述[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.01.10.002
引用本文: 马永浩, 张爽, 何修宇, 刘志杰. 基于连续反演算法的时滞补偿控制综述[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.01.10.002
MA Yong-hao, ZHANG Shuang, HE Xiu-yu, LIU Zhi-jie. A survey of delay compensation and control based on continuum backstepping control algorithms for time-delay systems[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.01.10.002
Citation: MA Yong-hao, ZHANG Shuang, HE Xiu-yu, LIU Zhi-jie. A survey of delay compensation and control based on continuum backstepping control algorithms for time-delay systems[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.01.10.002

基于连续反演算法的时滞补偿控制综述

doi: 10.13374/j.issn2095-9389.2021.01.10.002
基金项目: 国家自然科学基金资助项目(U2013201,62003029,62073031);北京科技大学顺德研究生院博士后研究基金资助项目(2020BH006);北京高校高精尖学科北京科技大学“人工智能科学与工程”
详细信息
    通讯作者:

    E-mail: xiuyuhe@ieee.org

  • 中图分类号: TP273.3

A survey of delay compensation and control based on continuum backstepping control algorithms for time-delay systems

More Information
  • 摘要: 在实际系统的工作过程中,时滞现象普遍存在,如控制信号的采集与传输、控制器的构建与实施、事件的决策与处理等。考虑并有效处理时滞特性的影响有助于提升系统的性能。基于连续反演算法的时滞补偿控制策略是一种有效的控制方法且取得很多研究成果。该时滞补偿控制的主要思路是将具有时滞特性的常微分方程或偏微分方程变换为不具有时滞特性的常微分方程−偏微分方程/常微分方程−偏微分方程(ODE−PDE/PDE−PDE)级联系统。进一步地,基于变换的级联系统,结合连续反演算法提出相应的控制策略。该方法具有系统的稳定性证明简单,鲁棒性强,易于求取闭环系统精确解等优点。详细论述了连续反演算法的基本原理,并针对基于连续反演算法的时滞补偿控制算法在处理输入、输出、状态等类型时滞特性的最新研究进展做简单的阐述和总结。最后,开放式地论述了时滞系统的未来研究方向。

     

  • 表  1  目前PDE时滞补偿控制研究内容

    Table  1.   Current research content of PDE time-delay compensation control

    Delay typeFrist-order PED Second-order PDE
    ConstantTime varying ConstantTime varying
    KnownUnknownKnownUnknown KnownUnknownKnownUnknown
    Input delay
    Output delay
    State delay
    下载: 导出CSV
  • [1] Fridman E. Introduction to Time-delay Systems: Analysis and Control. New York: Springer, 2014
    [2] Cao F R, Feng M L. An improved artificial fish swarm algorithm and its application on system identification with a time-delay system. Chin J Eng, 2017, 39(4): 619

    曹法如, 冯茂林. 改进人工鱼群算法及其在时滞系统辨识中的应用. 工程科学学报, 2017, 39(4):619
    [3] Li M, Chen Y. A wide-area dynamic damping controller based on robust H∞ control for wide-area power systems with random delay and packet dropout. IEEE Trans Power Syst, 2018, 33(4): 4026 doi: 10.1109/TPWRS.2017.2782792
    [4] Yue D, Tian E G, Han Q L. A delay system method for designing event-triggered controllers of networked control systems. IEEE Trans Autom Control, 2013, 58(2): 475 doi: 10.1109/TAC.2012.2206694
    [5] Imaida T, Yokokohji Y, Doi T, et al. Ground-space bilateral teleoperation of ETS-VII robot arm by direct bilateral coupling under 7-s time delay condition. IEEE Trans Robotics Autom, 2004, 20(3): 499 doi: 10.1109/TRA.2004.825271
    [6] Mounier H, Rudolph J. Flatness-based control of nonlinear delay systems: A chemical reactor example. Int J Control, 1998, 71(5): 871 doi: 10.1080/002071798221614
    [7] Liu L, Yin S, Zhang L X, et al. Improved results on asymptotic stabilization for stochastic nonlinear time-delay systems with application to a chemical reactor system. IEEE Trans Syst Man Cybern Syst, 2017, 47(1): 195 doi: 10.1109/TSMC.2016.2608799
    [8] Datko R. Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM J Control Optim, 1988, 26(3): 697 doi: 10.1137/0326040
    [9] Datko R. Two examples of ill-posedness with respect to small time delays in stabilized elastic systems. IEEE Trans Autom Control, 1993, 38(1): 163 doi: 10.1109/9.186332
    [10] Lee T H, Park J H, Xu S Y. Relaxed conditions for stability of time-varying delay systems. Automatica, 2017, 75: 11 doi: 10.1016/j.automatica.2016.08.011
    [11] Zheng G, Polyakov A, Levant A. Delay estimation via sliding mode for nonlinear time-delay systems. Automatica, 2018, 89: 266 doi: 10.1016/j.automatica.2017.11.033
    [12] Wang T, Qiu J B, Gao H J. Adaptive neural control of stochastic nonlinear time-delay systems with multiple constraints. IEEE Trans Syst Man Cybern Syst, 2017, 47(8): 1875 doi: 10.1109/TSMC.2016.2562511
    [13] Zhou B, Egorov A V. Razumikhin and Krasovskii stability theorems for time-varying time-delay systems. Automatica, 2016, 71: 281 doi: 10.1016/j.automatica.2016.04.048
    [14] Hamdy M, Abd-Elhaleem S, Fkirin M A. Time-varying delay compensation for a class of nonlinear control systems over network via H adaptive fuzzy controller. IEEE Trans Syst Man Cybern Syst, 2017, 47(8): 2114 doi: 10.1109/TSMC.2016.2614779
    [15] Nicaise S, Pignotti C. Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J Control Optim, 2006, 45(5): 1561 doi: 10.1137/060648891
    [16] Nicaise S, Rebiai S E. Stabilization of the Schrödinger equation with a delay term in boundary feedback or internal feedback. Port Math, 2011: 19 doi: 10.4171/PM/1879
    [17] Yeganefar N, Pepe P, Dambrine M. Input-to-state stability of time-delay systems: A link with exponential stability. IEEE Trans Autom Control, 2008, 53(6): 1526 doi: 10.1109/TAC.2008.928340
    [18] Krstic M. Input delay compensation for forward complete and strict-feedforward nonlinear systems. IEEE Trans Autom Control, 2010, 55(2): 287 doi: 10.1109/TAC.2009.2034923
    [19] Manitius A, Olbrot A. Finite spectrum assignment problem for systems with delays. IEEE Trans Autom Control, 1979, 24(4): 541 doi: 10.1109/TAC.1979.1102124
    [20] Furtat I, Fridman E, Fradkov A. Disturbance compensation with finite spectrum assignment for plants with input delay. IEEE Trans Autom Control, 2018, 63(1): 298 doi: 10.1109/TAC.2017.2732279
    [21] Lhachemi H, Prieur C. Feedback stabilization of a class of diagonal infinite-dimensional systems with delay boundary control. IEEE Trans Autom Control, 2021, 66(1): 105 doi: 10.1109/TAC.2020.2975003
    [22] Krstic M, Smyshlyaev A. Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays. Syst Control Lett, 2008, 57(9): 750 doi: 10.1016/j.sysconle.2008.02.005
    [23] Zhou B, Lin Z L, Duan G R. Truncated predictor feedback for linear systems with long time-varying input delays. Automatica, 2012, 48(10): 2387 doi: 10.1016/j.automatica.2012.06.032
    [24] Bekiaris-Liberis N, Krstic M. Predictor-feedback stabilization of multi-input nonlinear systems. IEEE Trans Autom Control, 2017, 62(2): 516 doi: 10.1109/TAC.2016.2558293
    [25] Zhou B, Gao H J, Lin Z L, et al. Stabilization of linear systems with distributed input delay and input saturation. Automatica, 2012, 48(5): 712 doi: 10.1016/j.automatica.2012.02.007
    [26] Guo B Z, Mei Z D. Output feedback stabilization for a class of first-order equation setting of collocated well-posed linear systems with time delay in observation. IEEE Trans Autom Control, 2020, 65(6): 2612 doi: 10.1109/TAC.2019.2941431
    [27] Hashimoto T, Krstic M. Stabilization of reaction diffusion equations with state delay using boundary control input. IEEE Trans Autom Control, 2016, 61(12): 4041 doi: 10.1109/TAC.2016.2539001
    [28] Smyshlyaev A, Krstic M. Closed-form boundary State feedbacks for a class of 1-D partial integro-differential equations. IEEE Trans Autom Control, 2004, 49(12): 2185 doi: 10.1109/TAC.2004.838495
    [29] Meurer T. Control of Higher-Dimensional PDEs: Flatness and Backstepping Designs. Berlin: Springer Science & Business Media, 2012
    [30] Cerpa E, Coron J M. Rapid stabilization for a korteweg-de vries equation from the left dirichlet boundary condition. IEEE Trans Autom Control, 2013, 58(7): 1688 doi: 10.1109/TAC.2013.2241479
    [31] Nakagiri S I. Deformation formulas and boundary control problems of first-order Volterra integro-differential equations with nonlocal boundary conditions. IMA J Math Control Inf, 2013, 30(3): 345 doi: 10.1093/imamci/dns026
    [32] Zhu Y, Fridman E. Observer-based decentralized predictor control for large-scale interconnected systems with large delays. IEEE Trans Autom Control, 1396, PP(99): 1
    [33] Zhu Y, Fridman E. Predictor methods for decentralized control of large-scale systems with input delays. Automatica, 2020, 116: 108903 doi: 10.1016/j.automatica.2020.108903
    [34] Koga S, Bresch-Pietri D, Krstic M. Delay compensated control of the Stefan problem and robustness to delay mismatch. Int J Robust Nonlinear Control, 2020, 30(6): 2304 doi: 10.1002/rnc.4909
    [35] Krstic M. On compensating long actuator delays in nonlinear control. IEEE Trans Autom Control, 2008, 53(7): 1684 doi: 10.1109/TAC.2008.928123
    [36] Krstic M. Lyapunov tools for predictor feedbacks for delay systems: Inverse optimality and robustness to delay mismatch. Automatica, 2008, 44(11): 2930 doi: 10.1016/j.automatica.2008.04.010
    [37] Krstic M. Lyapunov stability of linear predictor feedback for time-varying input delay. IEEE Trans Autom Control, 2010, 55(2): 554 doi: 10.1109/TAC.2009.2038196
    [38] Tsubakino D, Krstic M, Oliveira T R. Exact predictor feedbacks for multi-input LTI systems with distinct input delays. Automatica, 2016, 71: 143 doi: 10.1016/j.automatica.2016.04.047
    [39] Bekiaris-Liberis N, Krstic M. Lyapunov stability of linear predictor feedback for distributed input delays. IEEE Trans Autom Control, 2011, 56(3): 655 doi: 10.1109/TAC.2010.2092030
    [40] Cai X S, Bekiaris-Liberis N, Krstic M. Input-to-state stability and inverse optimality of linear time-varying-delay predictor feedbacks. IEEE Trans Autom Control, 2018, 63(1): 233 doi: 10.1109/TAC.2017.2722104
    [41] Cai X S, Bekiaris-Liberis N, Krstic M. Input-to-state stability and inverse optimality of predictor feedback for multi-input linear systems. Automatica, 2019, 103: 549 doi: 10.1016/j.automatica.2019.02.038
    [42] Cai X S, Wu J, Zhan X S, et al. Inverse optimal control for linearizable nonlinear systems with input delays. Kybernetika, 2019: 727 doi: 10.14736/kyb-2019-4-0727
    [43] Krstic M. Control of an unstable reaction-diffusion PDE with long input delay. Syst Control Lett, 2009, 58(10-11): 773 doi: 10.1016/j.sysconle.2009.08.006
    [44] Gu J J, Wang J M. Backstepping state feedback regulator design for an unstable reaction-diffusion PDE with long time delay. J Dyn Control Syst, 2018, 24(4): 563 doi: 10.1007/s10883-017-9384-5
    [45] Qi J, Krstic M, Wang S S. Stabilization of reaction-diffusions PDE with delayed distributed actuation. Syst Control Lett, 2019, 133: 104558 doi: 10.1016/j.sysconle.2019.104558
    [46] Liu D Y, Han R M, Xu G Q. Controller design for distributed parameter systems with time delays in the boundary feedbacks via the backstepping method. Int J Control, 2020, 93(5): 1220 doi: 10.1080/00207179.2018.1500717
    [47] Krstic M. Dead-time compensation for wave/string PDEs. J Dyn Syst Meas Control, 2011, 133(3): 031004 doi: 10.1115/1.4003638
    [48] Bresch-Pietri D, Krstic M. Adaptive trajectory tracking despite unknown input delay and plant parameters. Automatica, 2009, 45(9): 2074 doi: 10.1016/j.automatica.2009.04.027
    [49] Bresch-Pietri D, Chauvin J, Petit N. Adaptive control scheme for uncertain time-delay systems. Automatica, 2012, 48(8): 1536 doi: 10.1016/j.automatica.2012.05.056
    [50] Zhu Y, Krstic M, Su H Y. Adaptive output feedback control for uncertain linear time-delay systems. IEEE Trans Autom Control, 2017, 62(2): 545 doi: 10.1109/TAC.2016.2555479
    [51] Zhu Y, Krstic M. Delay-Adaptive Linear Control. Princeton: Princeton University Press, 2020
    [52] Krstic M, Bresch-Pietri D. Delay-adaptive full-state predictor feedback for systems with unknown long actuator delay // 2019 American Control Conference. St. Louis, 2009: 4500
    [53] Bresch-Pietri D, Krstic M. Delay-adaptive predictor feedback for systems with unknown long actuator delay. IEEE Trans Autom Control, 2010, 55(9): 2106 doi: 10.1109/TAC.2010.2050352
    [54] Zhu Y, Su H Y, Krstic M. Adaptive backstepping control of uncertain linear systems under unknown actuator delay. Automatica, 2015, 54: 256 doi: 10.1016/j.automatica.2015.02.013
    [55] Zhu Y, Krstic M, Su H Y. PDE boundary control of multi-input LTI systems with distinct and uncertain input delays. IEEE Trans Autom Control, 2018, 63(12): 4270 doi: 10.1109/TAC.2018.2810038
    [56] Zhu Y, Krstic M, Su H Y. Delay-adaptive control for linear systems with distributed input delays. Automatica, 2020, 116: 108902 doi: 10.1016/j.automatica.2020.108902
    [57] Ahmed-Ali T, Karafyllis I, Lamnabhi-Lagarrigue F. Global exponential sampled-data observers for nonlinear systems with delayed measurements. Syst Control Lett, 2013, 62(7): 539 doi: 10.1016/j.sysconle.2013.03.008
    [58] Cacace F, Germani A, Manes C. An observer for a class of nonlinear systems with time varying observation delay. Syst Control Lett, 2010, 59(5): 305 doi: 10.1016/j.sysconle.2010.03.005
    [59] Sanz R, García P, Krstic M. Observation and stabilization of LTV systems with time-varying measurement delay. Automatica, 2019, 103: 573 doi: 10.1016/j.automatica.2019.02.037
    [60] Wang J, Pi Y J, Hu Y M, et al. State-observer design of a PDE-modeled mining cable elevator with time-varying sensor delays. IEEE Trans Control Syst Technol, 2020, 28(3): 1149 doi: 10.1109/TCST.2019.2897077
    [61] Wang J, Krstic M. Delay-compensated control of sandwiched ODE-PDE-ODE hyperbolic systems for oil drilling and disaster relief. Automatica, 2020, 120: 109131 doi: 10.1016/j.automatica.2020.109131
    [62] Pinto H L C P, Oliveira T R, Hsu L, et al. Sliding mode control for disturbance rejection in systems with measurement delay using PDE-backstepping predictor // 2018 Annual American Control Conference (ACC). Milwaukee, 2018: 4099
    [63] Germani A, Manes C, Pepe P. A new approach to state observation of nonlinear systems with delayed output. IEEE Trans Autom Control, 2002, 47(1): 96 doi: 10.1109/9.981726
    [64] Kazantzis N, Wright R A. Nonlinear observer design in the presence of delayed output measurements. Syst Control Lett, 2005, 54(9): 877 doi: 10.1016/j.sysconle.2004.12.005
    [65] Ahmed-Ali T, Giri F, Krstic M, et al. PDE based observer design for nonlinear systems with large output delay. Syst Control Lett, 2018, 113: 1 doi: 10.1016/j.sysconle.2018.01.001
    [66] Kang W, Fridman E. Boundary control of reaction-diffusion equation with state-delay in the presence of saturation. IFAC-PapersOnLine, 2017, 50(1): 12002 doi: 10.1016/j.ifacol.2017.08.2120
    [67] Kang W, Fridman E. Regional stabilization of linear delayed Schrödinger equation by constrained boundary control // 2018 Annual American Control Conference (ACC). Milwaukee, 2018: 3330.
    [68] Kang W, Fridman E. Boundary constrained control of delayed nonlinear schrödinger equation. IEEE Trans Autom Control, 2018, 63(11): 3873 doi: 10.1109/TAC.2018.2800526
    [69] Zhao Z J, Ren Z G. Boundary control of a flexible marine riser subject to nonsmooth actuator backlash-saturation constraints. Acta Autom Sin, 2019, 45(11): 2050

    赵志甲, 任志刚. 针对执行器非光滑反向间隙−饱和的柔性立管边界控制. 自动化学报, 2019, 45(11):2050
    [70] Feng J L, Liu Z J, He X Y, et al. Adaptive vibration control for an active mass damper of a high-rise building. IEEE Trans Syst Man Cybern:Syst, 6891, PP(99): 1
    [71] Wang J, Koga S, Pi Y J, et al. Axial vibration suppression in a partial differential equation model of ascending mining cable elevator. J Dyn Syst Meas Control, 2018, 140(11): 111003 doi: 10.1115/1.4040217
    [72] He W, Ding S Q, Sun C Y. Research progress on modeling and control of flapping-wing air vehicles. Acta Autom Sin, 2017, 43(5): 685

    贺威, 丁施强, 孙长银. 扑翼飞行器的建模与控制研究进展. 自动化学报, 2017, 43(5):685
    [73] Fu Q, Chen X Y, Zheng Z L, et al. Research progress on visual perception system of bionic flapping-wing aerial vehicles. Chin J Eng, 2019, 41(12): 1512

    付强, 陈向阳, 郑子亮, 等. 仿生扑翼飞行器的视觉感知系统研究进展. 工程科学学报, 2019, 41(12):1512
    [74] He W, Liu S P, Huang H F, et al. System design and experiment of an independently driven bird-like flapping-wing robot. Control Theory Appl, http://kns.cnki.net/kcms/detail/44.1240.TP.20210629.0955.004.html

    贺威, 刘上平, 黄海丰, 等. 独立驱动的仿鸟扑翼飞行机器人的系统设计与实验. 控制理论与应用. http://kns.cnki.net/kcms/detail/44.1240.TP.20210629.0955.004.html
    [75] Fu Q, Chen X Y, He W. A survey on 3D visual tracking of multicopters. Int J Autom Comput, 2019, 16(6): 707 doi: 10.1007/s11633-019-1199-2
    [76] Liu Z J, Song C C, Liang J Y, et al. Advances in modeling and control of probe-drogue aerial refueling. Chin J Eng, 2021(1): 150

    刘志杰, 宋丛丛, 梁金源, 等. 空中加油机加油软管系统建模和控制研究进展. 工程科学学报, 2021(1):150
  • 加载中
表(1)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  97
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-10
  • 网络出版日期:  2021-04-09

目录

    /

    返回文章
    返回