• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属矿尾砂浓密技术研究现状与展望

王洪江 彭青松 杨莹 郭佳宾

王洪江, 彭青松, 杨莹, 郭佳宾. 金属矿尾砂浓密技术研究现状与展望[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.01.11.001
引用本文: 王洪江, 彭青松, 杨莹, 郭佳宾. 金属矿尾砂浓密技术研究现状与展望[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.01.11.001
WANG Hong-jiang, PENG Qing-song, YANG Ying, GUO Jia-bin. Research status and prospect of thickening technology for metal tailings[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.01.11.001
Citation: WANG Hong-jiang, PENG Qing-song, YANG Ying, GUO Jia-bin. Research status and prospect of thickening technology for metal tailings[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.01.11.001

金属矿尾砂浓密技术研究现状与展望

doi: 10.13374/j.issn2095-9389.2021.01.11.001
基金项目: 国家自然科学基金重点资助项目(51834001);中国博士后科学基金资助项目(2021M701516)
详细信息
    通讯作者:

    E-mail: monicayang1129@hotmail.com

  • 中图分类号: TD853

Research status and prospect of thickening technology for metal tailings

More Information
  • 摘要: 作为金属矿山膏体充填技术的首要环节,尾砂浓密技术能够显著提高尾砂脱水效率和尾砂利用率,是矿山绿色发展的重要组成部分。在概述了尾砂浓密脱水技术发展历程的基础上,将浓密机发展阶段分为普通浓密机阶段、高效浓密机阶段和膏体浓密机阶段,阐述了尾砂浓密工艺的应用现状和国内外几个典型的应用案例。介绍了对尾砂起捕捉作用的单一絮凝理论和多重絮凝理论,静态/动态压缩条件下的床层压缩理论与重力浓密理论,并阐述了各理论的最新研究进展。阐述了现阶段尾砂浓密静态沉降实验、小型浓密实验和半工业浓密实验等主要研究方法,介绍了聚焦光束反射测量技术、颗粒录影显微镜技术等先进的观测手段和尾砂浓密技术数值模拟研究现状。现阶段,尾砂浓密脱水技术仍处于发展阶段,存在尾砂浓密的关键参数不稳定、尾砂浓密的生产调控不及时和尾砂浓密的信息平台不健全等问题,尾砂浓密技术的发展仍面临诸多挑战。最后提出了尾砂浓密技术个性化、自动化和智能化的发展方向。

     

  • 图  1  某颗粒物料静态沉降导水通道与火山口现象

    Figure  1.  Water channel and the volcanic phenomenon of static sedimentation of a granular material

    图  2  Coe−Clevenger固体通量曲线

    Figure  2.  Coe−Clevenger solid flux curve

    图  3  Kynch沉降理论图解

    Figure  3.  Illustration of Kynch settlement theory

    图  4  C−C理论与B−W理论合并曲线

    Figure  4.  Combination curves of C−C and B−W theories

    图  5  尾砂浓密物理实验装置。(a)静态沉降实验;(b)小型浓密实验;(c)半工业浓密实验

    Figure  5.  Physical experimental device for tailings thickening: (a) static settlement experiment; (b) small dense experiment; (c) semi-industrial dense experiment

    图  6  浓密过程颗粒的沉降运动和凝聚行为

    Figure  6.  Settling motion and agglomeration behavior of particles in the thickening process

  • [1] Cheng H Y. Characteristics of Rheological Parameters and Pipe Resistance under the Time-Temperature Effect [Dissertation]. Beijing: University of Science and Technology Beijing, 2018

    程海勇. 时—温效应下膏体流变参数及管阻特性[学位论文]. 北京: 北京科技大学, 2018
    [2] Li G C. Study on Size Change of Unclassified Tailings Flocs and Its Thickening Performance [Dissertation]. Beijing: University of Science and Technology Beijing, 2019

    李公成. 全尾砂絮团尺寸变化及其浓密性能研究[学位论文]. 北京: 北京科技大学, 2019
    [3] Ma C X, Qin H L. On the dam stability of the tailing pond based on the analysis on the seepage stability. Ind Saf Environ Prot, 2008, 34(9): 32 doi: 10.3969/j.issn.1001-425X.2008.09.014

    马池香, 秦华礼. 基于渗透稳定性分析的尾矿库坝体稳定性研究. 工业安全与环保, 2008, 34(9):32 doi: 10.3969/j.issn.1001-425X.2008.09.014
    [4] Jiangsu, Lu H, Cao R X, et al. Pollution evaluation of heavy metal in soils of an iron mine's tailing reservoir and its surrounding region. Environ Sci Technol, 2014, 37(Suppl 1): 274

    姜素, 陆华, 曹瑞祥, 等. 某铁矿尾矿库及周边土壤重金属污染评价. 环境科学与技术, 2014, 37(增刊1): 274
    [5] Wang X L, Yao W X, Wang H, et al. The directions of R & D on backfill with waste rock and total tailings in underground mine. China Min Mag, 2011, 20(9): 76 doi: 10.3969/j.issn.1004-4051.2011.09.020

    王贤来, 姚维信, 王虎, 等. 矿山废石全尾砂充填研究现状与发展趋势. 中国矿业, 2011, 20(9):76 doi: 10.3969/j.issn.1004-4051.2011.09.020
    [6] Concha F, Bürger R. Thickening in the 20th century: A historical perspective. Min Metall Explor, 2003, 20(2): 57
    [7] Concha F, Bürger R. A century of research in sedimentation and thickening. KONA Powder Part J, 2002, 20: 38 doi: 10.14356/kona.2002009
    [8] Zhan H H, Luo Y W. Research on flocculation setting of high density fine particle coal slurry. Coal Sci Technol, 2007, 35(2): 76 doi: 10.3969/j.issn.0253-2336.2007.02.023

    湛含辉, 罗彦伟. 高浓度细粒煤泥水的絮凝沉降研究. 煤炭科学技术, 2007, 35(2):76 doi: 10.3969/j.issn.0253-2336.2007.02.023
    [9] Chen S W, Tong K W, Ma Z S, et al. High efficiency thickener—Current status and application prospects. Met Mine Des Constr, 1997(1): 48

    陈述文, 马振声. 高效浓密机的应用现状及前景. 冶金矿山设计与建设, 1997(1):48
    [10] Ruan Z E, Wu A X, Wang Y M, et al. Effect of flocculation sedimentation on the yield stress of thickened ultrafine tailings slurry. Chin J Eng, 2021, 43(10): 1276

    阮竹恩, 吴爱祥, 王贻明, 等. 絮凝沉降对浓缩超细尾砂料浆屈服应力的影响. 工程科学学报, 2021, 43(10):1276
    [11] Zhou X, Ruan Z E, Wu A X, et al. Aggregate evolution rule during tailings thickening based on FBRM and PVM. Chin J Eng, 2021, 43(11): 1425

    周旭, 阮竹恩, 吴爱祥, 等. 基于FBRM和PVM技术的尾矿浓密过程絮团演化规律. 工程科学学报, 2021, 43(11):1425
    [12] Tao D, Parekh B K, Zhao Y M, et al. Pilot-scale demonstration of deep cone™ paste thickening process for phosphatic clay/sand disposal. Sep Sci Technol, 2010, 45(10): 1418 doi: 10.1080/01496391003652783
    [13] Chen H J, He Y M, Luan J L, et al. Comparison of tailings stacking technologies and their applications. Yunnan Metall, 2012, 41(4): 68 doi: 10.3969/j.issn.1006-0308.2012.04.018

    陈华君, 何艳明, 栾景丽, 等. 尾矿堆存处理工艺比较及应用. 云南冶金, 2012, 41(4):68 doi: 10.3969/j.issn.1006-0308.2012.04.018
    [14] Guo L J, Yu B. Status and future of filling technology and equipment in metal mines in China. Min Technol, 2011, 11(3): 12 doi: 10.3969/j.issn.1671-2900.2011.03.004

    郭利杰, 余斌. 中国金属矿山充填技术与装备的现状和未来. 采矿技术, 2011, 11(3):12 doi: 10.3969/j.issn.1671-2900.2011.03.004
    [15] Li S L, Du Y Y. Application of paste technology in tailings stacking of dishui chalcopyrite of Xinjiang. Nonferrous Met Eng, 2016, 6(4): 73 doi: 10.3969/j.issn.2095-1744.2016.04.018

    李仕亮, 杜玉艳. 膏体技术在新疆滴水铜矿尾矿堆存中的应用. 有色金属工程, 2016, 6(4):73 doi: 10.3969/j.issn.2095-1744.2016.04.018
    [16] McMahon J. Optimizing tailings disposal and water recovery. Pollut Eng, 2014, 46(8): 20
    [17] Gu C H. Research progress in coagulation mechanism of organic macro-molecular coagulants. J Chongqing Technol Bus Univ Nat Sci, 2007, 24(6): 573

    古昌红. 有机高分子絮凝剂絮凝机理的研究进展. 重庆工商大学学报(自然科学版), 2007, 24(6):573
    [18] Chang Q. Flocculation of Water Treatment. Beijing: Chemical Industry Press, 2003

    常青. 水处理絮凝学. 北京: 化学工业出版社, 2003
    [19] Gregory J, Barany S. Adsorption and flocculation by polymers and polymer mixtures. Adv Colloid Interface Sci, 2011, 169(1): 1 doi: 10.1016/j.cis.2011.06.004
    [20] Lee C H, Liu J C. Sludge dewaterability and floc structure in dual polymer conditioning. Adv Environ Res, 2001, 5(2): 129 doi: 10.1016/S1093-0191(00)00049-6
    [21] Petzold G, Mende M, Lunkwitz K, et al. Higher efficiency in the flocculation of clay suspensions by using combinations of oppositely charged polyelectrolytes. Colloids Surfaces A Physicochem Eng Aspects, 2003, 218(1-3): 47 doi: 10.1016/S0927-7757(02)00584-8
    [22] Lu Q Y, Yan B, Xie L, et al. A two-step flocculation process on oil sands tailings treatment using oppositely charged polymer flocculants. Sci Total Environ, 2016, 565: 369 doi: 10.1016/j.scitotenv.2016.04.192
    [23] Lemanowicz M, Jach Z, Kilian E, et al. Ultra-fine coal flocculation using dual-polymer systems of ultrasonically conditioned and unmodified flocculant. Chem Eng J, 2011, 168(1): 159 doi: 10.1016/j.cej.2010.12.057
    [24] Lee C H, Liu J C. Enhanced sludge dewatering by dual polyelectrolytes conditioning. Water Res, 2000, 34(18): 4430 doi: 10.1016/S0043-1354(00)00209-8
    [25] Fan A X, Turro N J, Somasundaran P. A study of dual polymer flocculation. Colloids Surfaces A Physicochem Eng Aspects, 2000, 162(1-3): 141 doi: 10.1016/S0927-7757(99)00252-6
    [26] Sabah E, Yüzer H, Çelik M S. Characterization and dewatering of fine coal tailings by dual-flocculant systems. Int J Miner Process, 2004, 74(1-4): 303 doi: 10.1016/j.minpro.2004.03.001
    [27] Nasser M S, James A E. The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behaviour of kaolinite suspensions. Sep Purif Technol, 2006, 52(2): 241 doi: 10.1016/j.seppur.2006.04.005
    [28] Zbik M S, Smart R S C, Morris G E. Kaolinite flocculation structure. J Colloid Interface Sci, 2008, 328(1): 73 doi: 10.1016/j.jcis.2008.08.063
    [29] Mpofu P, Addai-Mensah J, Ralston J. Temperature influence of nonionic polyethylene oxide and anionic polyacrylamide on flocculation and dewatering behavior of kaolinite dispersions. J Colloid Interface Sci, 2004, 271(1): 145 doi: 10.1016/j.jcis.2003.09.042
    [30] Johnson S B, Scales P J, Dixon D R, et al. Use of a superthickener device to concentrate potable water sludge. Water Res, 2000, 34(1): 288 doi: 10.1016/S0043-1354(99)00118-9
    [31] Farrow J B, Johnston R R M, Simic K, et al. Consolidation and aggregate densification during gravity thickening. Chem Eng J, 2000, 80(1-3): 141 doi: 10.1016/S1383-5866(00)00083-6
    [32] Gladman B R, Rudman M, Scales P J. Experimental validation of a 1-D continuous thickening model using a pilot column. Chem Eng Sci, 2010, 65(13): 3937 doi: 10.1016/j.ces.2010.03.029
    [33] Comings E W, Pruiss C E, DeBord C. Continuous settling and thickening. Ind Eng Chem, 1954, 46(6): 1164 doi: 10.1021/ie50534a030
    [34] Usher S P, Scales P J. Steady state thickener modelling from the compressive yield stress and hindered settling function. Chem Eng J, 2005, 111(2-3): 253 doi: 10.1016/j.cej.2005.02.015
    [35] Gladman B, de Kretser R G, Rudman M, et al. Effect of shear on particulate suspension dewatering. Chem Eng Res Des, 2005, 83(7): 933
    [36] Jiao H Z, Jin X F, Chen X M, et al. Distribution of water channel and law of meso seepage in gravity thickening of unclassified tailings. Gold Sci Technol, 2019, 27(5): 731

    焦华喆, 靳翔飞, 陈新明, 等. 全尾砂重力浓密导水通道分布与细观渗流规律. 黄金科学技术, 2019, 27(5):731
    [37] Jeldres R I, Fawell P D, Florio B J. Population balance modelling to describe the particle aggregation process: A review. Powder Technol, 2018, 326: 190 doi: 10.1016/j.powtec.2017.12.033
    [38] O'Donnell J A, Bayrak N. Review of channelling in batch sedimentation // 32nd Australasian Chemical Engineering Conference: Sustainable Processes. Sydney, 2004: 822
    [39] Du J H, Pushkarova R A, Smart R S C. A cryo-SEM study of aggregate and floc structure changes during clay settling and raking processes. Int J Miner Process, 2009, 93(1): 66 doi: 10.1016/j.minpro.2009.06.004
    [40] Eswaraiah C, Biswal S K, Mishra B K. Settling characteristics of ultrafine iron ore slimes. Int J Miner Metall Mater, 2012, 19(2): 95 doi: 10.1007/s12613-012-0521-6
    [41] Wu A X, Wang H J. Theory and Technology of Paste Technology in Metal Mines. Beijing: Science Press, 2015

    吴爱祥, 王洪江. 金属矿膏体充填理论与技术. 北京: 科学出版社, 2015
    [42] Kynch G J. A theory of sedimentation. Trans Faraday Soc, 1952, 48(0): 166
    [43] Batchelor G K. Sedimentation in a dilute dispersion of spheres. J Fluid Mech, 1972, 52(2): 245 doi: 10.1017/S0022112072001399
    [44] Fitch B. Current theory and thickener design. Ind Eng Chem, 1966, 58(10): 18 doi: 10.1021/ie50682a006
    [45] Buscall R, White L R. The consolidation of concentrated suspensions. Part 1. —The theory of sedimentation. J Chem Soc,Faraday Trans 1, 1987, 83(3): 873 doi: 10.1039/f19878300873
    [46] Landman K A, White L R, Eberl M. Pressure filtration of flocculated suspensions. AIChE J, 1995, 41(7): 1687 doi: 10.1002/aic.690410709
    [47] Betancourt F, Bürger R, Diehl S, et al. Advanced methods of flux identification for clarifier-thickener simulation models. Miner Eng, 2014, 63: 2 doi: 10.1016/j.mineng.2013.09.012
    [48] Parsapour G A, Hossininasab M, Yahyaei M, et al. Effect of settling test procedure on sizing thickeners. Sep Purif Technol, 2014, 122: 87 doi: 10.1016/j.seppur.2013.11.001
    [49] Landman K A, White L R, Buscall R. The continuous-flow gravity thickener: Steady state behavior. AIChE J, 1988, 34(2): 239 doi: 10.1002/aic.690340208
    [50] Usher S P, Spehar R, Scales P J. Theoretical analysis of aggregate densification: Impact on thickener performance. Chem Eng J, 2009, 151(1-3): 202 doi: 10.1016/j.cej.2009.02.027
    [51] Wang Y, Wang H J, Wu A X. Mathematical model of deep cone thickener underflow concentration based on the height to diameter ratio. J Wuhan Univ Technol, 2011, 33(8): 113 doi: 10.3963/j.issn.1671-4431.2011.08.025

    王勇, 王洪江, 吴爱祥. 基于高径比的深锥浓密机底流浓度数学模型. 武汉理工大学学报, 2011, 33(8):113 doi: 10.3963/j.issn.1671-4431.2011.08.025
    [52] Yin S H, Wang Y. Influence of mud height on the concentrastion of the fine tailing. Sci Technol Rev, 2012, 30(7): 29 doi: 10.3981/j.issn.1000-7857.2012.07.004

    尹升华, 王勇. 泥层高度对细粒全尾浓密规律的影响. 科技导报, 2012, 30(7):29 doi: 10.3981/j.issn.1000-7857.2012.07.004
    [53] Wu A X, Jiao H Z, Wang H J, et al. Mechanical model of scraper rake torque in deep-cone thickener. J Centl South Univ Sci Technol, 2012, 43(4): 1469

    吴爱祥, 焦华喆, 王洪江, 等. 深锥浓密机搅拌刮泥耙扭矩力学模型. 中南大学学报(自然科学版), 2012, 43(4):1469
    [54] Biggs S, Habgood M, Jameson G J, et al. Aggregate structures formed via a bridging flocculation mechanism. Chem Eng J, 2000, 80(1-3): 13 doi: 10.1016/S1383-5866(00)00072-1
    [55] Bushell G C, Yan Y D, Woodfield D, et al. On techniques for the measurement of the mass fractal dimension of aggregates. Adv Colloid Interface Sci, 2002, 95(1): 1 doi: 10.1016/S0001-8686(00)00078-6
    [56] Yang Z, Yuan B, Huang X, et al. Evaluation of the flocculation performance of carboxymethyl chitosan-graft-polyacrylamide, a novel amphoteric chemically bonded composite flocculant. Water Res, 2012, 46(1): 107 doi: 10.1016/j.watres.2011.10.024
    [57] Zhang F D, Li G D, Pei J C, et al. Study on the dynamic flocculation process of Kaolin suspensions induced by cationic polyacrylamide by using FBRM. China Pulp Pap, 2013, 32(10): 15 doi: 10.11980/j.issn.0254-508X.2013.10.004

    张方东, 李国栋, 裴继诚, 等. 利用FBRM研究阳离子聚丙烯酰胺对高岭土的动态絮凝过程. 中国造纸, 2013, 32(10):15 doi: 10.11980/j.issn.0254-508X.2013.10.004
    [58] Rudman M, Simic K, Paterson D A, et al. Raking in gravity thickeners. Int J Miner Process, 2008, 86(1-4): 114 doi: 10.1016/j.minpro.2007.12.002
    [59] Rudman M, Paterson D A, Simic K. Efficiency of raking in gravity thickeners. Int J Miner Process, 2010, 95(1-4): 30 doi: 10.1016/j.minpro.2010.03.007
    [60] Tanguay M, Fawell P, Adkins S. Modelling the impact of two different flocculants on the performance of a thickener feedwell. Appl Math Model, 2014, 38(17-18): 4262 doi: 10.1016/j.apm.2014.04.047
    [61] Qiu L C, Liu J J, Liu Y, et al. CFD−DEM simulation of flocculation and sedimentation of cohesive fine particles // Proceedings of the 7th International Conference on Discrete Element Methods. Singapore, 2017: 537
    [62] Chaumeil F, Crapper M. Using the DEM−CFD method to predict Brownian particle deposition in a constricted tube. Particuology, 2014, 15: 94
  • 加载中
图(6)
计量
  • 文章访问数:  142
  • HTML全文浏览量:  139
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-11
  • 网络出版日期:  2021-04-09

目录

    /

    返回文章
    返回