Discussion on the stability evaluation standard of a rock slope in a noncoal open-pit mine
-
摘要: 根据露天矿山的生产工艺特征,将岩质边坡划分为总体边坡、路间边坡和台阶边坡三种尺度,并对其控制因素、破坏模式进行了分析;结合土木工程边坡规范和非煤露天矿山边坡规范的边坡设计安全系数取值,讨论了国内外非煤露天矿山边坡设计安全系数的要求,提出了六条建议;综合考虑服务年限、边坡尺度规模的设计安全系数改进方案,并引入失稳概率,拓展了不同尺度边坡稳定性评价的设计标准,可有效提升非煤露天矿岩质边坡稳定性评价的合理性和科学性,进一步完善了矿山边坡设计理论和方法。Abstract: As an important way to obtain mineral resources, open-pit mining has accounted for about 77% of the total production of the mined iron ore, and about 52% of the total production of non-ferrous ore, indicating huge development potential. With the continuous development of open-pit mines to deep and large-scale directions, the height of mine slopes is constantly increasing and the maximum height has exceeded kilometers. Slope instability disaster is a major problem faced by open-pit mines, and the evaluation and analysis of the stability of mine slopes are of great importance. However, in the stability evaluation and analysis of rock slopes in many open-pit mines, the engineering scale is ignored, the value of design safety factor is too conservative, and the evaluation index is single, rendering it difficult to consider the economy and safety of mine slope evaluation and resulting in the waste of resources and frequent accidents. In this paper, rock slopes were divided into three scales according to the production process characteristics of open-pit mines: (1) overall slope, (2) inter-ramp slope, and (3) bench slope. Moreover, the control elements and failure modes of the slopes were analyzed. Combined with the design safety factor value of the civil-engineering slope standards and specifications of a non-coal open-pit mine slope, the design safety factor requirements of non-coal open-pit mine slopes at home and abroad were discussed, then six suggestions were put forward. Comprehensively taking service years and the improved scheme of design safety factor in slope scale into consideration, the instability probability were introduced to extend the design standard of slope stability evaluation in different scales, which can effectively improve the rationality and scientificity of the rock slope stability evaluation in non-coal open-pit mines, further improving the mining slope design theory and method.
-
Key words:
- open-pit mine /
- rock slope /
- design safety factor /
- instability probability /
- slope stability /
- evaluation standard
-
表 1 露天矿山边坡设计方案
Table 1. Slope design scheme of the open-pit mine
Slope design scheme Overall angle/ (°) Safety factor Scheme 1 38 1.462 Scheme 2 40 1.364 Material type Conditions Design safety factor Soil earthworks Normal loads and service conditions 1.5 Maximum loads and worst environmental conditions 1.3 Earth retaining Normal loads and service conditions 2.0 Slopes Temporary 1.25 Permanent 1.5 表 3 边坡危害等级
Table 3. Slope hazard grade
Slope hazard grade Possible casualties Potential economic risk/(106 ¥) Comprehensive assessment Direct Indirect Ⅰ Casualties ≥1.0 ≥10 Very serious Ⅱ Injured 0.5−1.0 5−10 Serious Ⅲ Unharmed ≤0.5 ≤5 Ordinary 表 4 边坡工程安全等级划分
Table 4. Safety classification of slope engineering
Slope engineering safety grade Slope height, H/m Slope hazard grade Ⅰ H>500 Ⅰ, Ⅱ, Ⅲ 300<H≤500 Ⅰ, Ⅱ 100<H≤300 Ⅰ Ⅱ 300<H≤500 Ⅲ 100<H≤300 Ⅱ, Ⅲ H≤100 Ⅰ Ⅲ 100<H≤300 Ⅲ H≤100 Ⅱ, Ⅲ 表 5 不同荷载组合下总体边坡的设计安全系数
Table 5. Design safety factor of the overall slope under different load combinations
Slope engineering
safety gradeSlope engineering design safety factor Load combination Ⅰ Load combination Ⅱ Load combination Ⅲ Ⅰ 1.25−1.20 1.23−1.18 1.20−1.15 Ⅱ 1.20−1.15 1.18−1.13 1.15−1.10 Ⅲ 1.15−1.10 1.13−1.08 1.10−1.05 表 6 边坡危害等级建议
Table 6. Recommendation on the grade of the slope hazard
Slope hazard grade Possible casualties Potential economic risk/
(106 ¥)Comprehensive assessment Direct Indirect 1 Casualties ≥10 ≥50 Very serious 2 Injured 2−10 10−50 Serious 3 Unharmed ≤2 ≤10 Ordinary 表 7 边坡工程安全等级划分建议
Table 7. Suggestions on the safety classification of slope engineering
Slope engineering safety grade Slope height, H/m Slope hazard grade Note Ⅰ H>500 1, 2, 3 The engineering security levels should be increased a level for open-pit mine slope whose security level belong to II or III, or service years greater than 25 300<H≤500 1, 2 100<H≤300 1 Ⅱ 300<H≤500 3 100<H≤300 2, 3 H≤100 1 Ⅲ 100<H≤300 3 H≤100 2, 3 表 8 采矿岩石边坡可接受的失稳概率
Table 8. Acceptable instability probability of mining rock slopes
Category Description Acceptable instability probability 1 Critical slopes where failure may affect the continuous operation and pit safety <5% 2 Slopes where failure have a significant impact on costs and safety <15% 3 Slopes where failure has a notable impact on costs and
where minimal safety hazards exist<30% 表 9 露天矿岩质边坡设计安全系数与失稳概率建议值
Table 9. Suggested value of the design safety factor and instability probability of the rock slope in the open-pit mine
Slope scale Slope engineering safety grade Acceptable criteria Minimum design safety factor (static) Minimum design safety factor (dynamic) Maximum instability probability/% Bench Ⅰ, Ⅱ, Ⅲ 1.1 — 25 Inter-ramp Ⅲ 1.15 1.0 20 Ⅱ 1.2 1.0 15 Ⅰ 1.2 1.1 Overall Ⅲ 1.2 1.0 15 Ⅱ 1.25 1.05 10 Ⅰ 1.3 1.1 5 Important production Ⅰ, Ⅱ, Ⅲ 1.3 1.1 5 -
参考文献
[1] Qian M G, Miao X X, Xu J L, et al. On scientized mining. J Min Saf Eng, 2008, 25(1): 1 doi: 10.3969/j.issn.1673-3363.2008.01.001钱鸣高, 缪协兴, 许家林, 等. 论科学采矿. 采矿与安全工程学报, 2008, 25(1):1 doi: 10.3969/j.issn.1673-3363.2008.01.001 [2] Wang Q M. Status que of large and medium slopes in China non-coal open-pit mines and countermeasures. Met Mine, 2007(10): 1 doi: 10.3321/j.issn:1001-1250.2007.10.001王启明. 我国非煤露天矿山大中型边坡安全现状及对策. 金属矿山, 2007(10):1 doi: 10.3321/j.issn:1001-1250.2007.10.001 [3] Qin H N. Study on Waste Dump Landslide Inducement Mechanism and Monitoring and Early Warning Technology of Zijinshan Gold and Copper Mine [Dissertation]. Beijing: University of Science and Technology Beijing, 2016秦宏楠. 紫金山金铜矿排土场滑坡诱发机理及监测预警技术研究[学位论文]. 北京: 北京科技大学, 2016 [4] 《Statistical Analysis report on production safety accidents in non-coal Mines nationwide in 2017》was released. Occup Health Emerg Rescue, 2018, 36(3): 284《2017年全国非煤矿山生产安全事故统计分析报告》发布. 职业卫生与应急救援, 2018, 36(3): 284 [5] Wang S W, Liu H D, Wan L H. Research of safety standard of pit slope. J North China Inst Water Conserv Hydroelectr Power, 2004, 25(1): 54王四巍, 刘汉东, 万林海. 矿山边坡安全度标准的研究. 华北水利水电学院学报, 2004, 25(1):54 [6] Ministry of Housing and Urban-Rural Development, People’s Republic of China. GB51016—2014 Technical Code for Non-coal Open Mine Slope Engineering. Beijing: China Planning Press, 2014中华人民共和国住房和城乡建设部. GB51016—2014非煤露天矿边坡工程技术规范. 北京: 中国计划出版社, 2014 [7] Du S G, Yong R, Chen J Q, et al. Graded analysis for slope stability assessment of large open-pit mines. Chin J Rock Mech Eng, 2017, 36(11): 2601杜时贵, 雍睿, 陈咭扦, 等. 大型露天矿山边坡岩体稳定性分级分析方法. 岩石力学与工程学报, 2017, 36(11):2601 [8] Du S G. Method of equal accuracy assessment for the stability analysis of large open-pit mine slopes. Chin J Rock Mech Eng, 2018, 37(6): 1301杜时贵. 大型露天矿山边坡稳定性等精度评价方法. 岩石力学与工程学报, 2018, 37(6):1301 [9] Terbrugge P J, Wesseloo J, Venter J, et al. A risk consequence approach to open pit slope design. J S Afr Inst Min Metall, 2006, 106(7): 503 [10] Johari A, Lari A M. System probabilistic model of rock slope stability considering correlated failure modes. Comput Geotech, 2017, 81: 26 doi: 10.1016/j.compgeo.2016.07.010 [11] Obregon C, Mitri H. Probabilistic approach for open pit bench slope stability analysis - A mine case study. Int J Min Sci Techno, 2019, 29(4): 629 doi: 10.1016/j.ijmst.2019.06.017 [12] Chen Q, Tang M, Zhu F Q. Influence of uncertainty of strength parameters on instability probability of embankment dam slopes. Chin J Geotech Eng, 2008, 30(11): 1594 doi: 10.3321/j.issn:1000-4548.2008.11.003陈群, 唐岷, 朱分清. 强度参数的不确定性对土石坝坝坡失稳概率的影响. 岩土工程学报, 2008, 30(11):1594 doi: 10.3321/j.issn:1000-4548.2008.11.003 [13] Wu S C, Zhang H J, Xiao S, et al. Study on time-varying target reliability of open-pit slope considering service life. J Min Saf Eng, 2019, 36(3): 542吴顺川, 张化进, 肖术, 等. 考虑服务年限的露天矿边坡时变目标可靠度研究. 采矿与安全工程学报, 2019, 36(3):542 [14] Rao Y Z, Zhang X Y, Li J, et al. Relationship between slope safety factor and landslide probability. J Yangtze River Sci Res Inst, 2017, 34(5): 63 doi: 10.11988/ckyyb.20160186饶运章, 张学焱, 利坚, 等. 边坡安全系数与滑坡概率关系分析. 长江科学院院报, 2017, 34(5):63 doi: 10.11988/ckyyb.20160186 [15] Sun J Z, Han S C, Xiong F, et al. Probability analysis of slope seismic instability. Xinjiang Geol, 2020, 38(2): 262 doi: 10.3969/j.issn.1000-8845.2020.02.021孙进忠, 韩赛超, 熊峰, 等. 边坡地震失稳概率分析. 新疆地质, 2020, 38(2):262 doi: 10.3969/j.issn.1000-8845.2020.02.021 [16] Jiang S H, Liu X, Huang F M, et al. Failure mechanism and reliability analysis of soil slopes under rainfall infiltration considering spatial variability of multiple soil parameters. Chin J Geotech Eng, 2020, 42(5): 900蒋水华, 刘贤, 黄发明, 等. 考虑多参数空间变异性的降雨入渗边坡失稳机理及可靠度分析. 岩土工程学报, 2020, 42(5):900 [17] Yang T H, Zhang F C, Yu Q L, et al. Research situation of open-pit mining high and steep slope stability and its developing trend. Rock Soil Mech, 2011, 32(5): 1437 doi: 10.3969/j.issn.1000-7598.2011.05.025杨天鸿, 张锋春, 于庆磊, 等. 露天矿高陡边坡稳定性研究现状及发展趋势. 岩土力学, 2011, 32(5):1437 doi: 10.3969/j.issn.1000-7598.2011.05.025 [18] Wu S C, Jin A B, Liu Y, Slope Engineering. Beijing: Metallurgical Industry Press, 2020吴顺川, 金爱兵, 刘洋. 边坡工程. 北京: 冶金工业出版社, 2020 [19] State Administration for Market Regulation. GB/T 38509—2020 Code for the Design of Landslide Stabilization. Beijing: Standards Press of China, 2020国家市场监督管理总局. GB/T 38509—2020滑坡防治设计规范. 北京: 中国标准出版社, 2020 [20] Ministry of Transport of the People’s Republic of China. JTGD30—2015 Specifications for Design of Highway Subgrades. Beijing: China Communications Press, 2015中华人民共和国交通运输部. JTGD30—2015公路路基设计规范. 北京: 人民交通出版社, 2015 [21] Ministry of Housing and Urban-Rural Development, People’s Republic of China. GB50330—2013 Technical Code for Building Slope Engineering. Beijing: China Architecture and Building Press, 2013.中华人民共和国住房和城乡建设部. GB50330—2013建筑边坡工程技术规范. 北京: 中国建筑工业出版社, 2013 [22] National Railway Administration of People's Republic of China. TB10025—2019 Code for Design of Retaining Structures of Railway Earthworks. Beijing: China Railway Publishing House, 2019国家铁路局. TB10025—2019铁路路基支挡结构设计规范. 北京: 中国铁道出版社, 2019 [23] Pan H Y, He J D, Zhang L. Application of material strength reserve method to the analysis of stability of high rock slope. J Sichu Union Univ Eng Sci, 1998, 2(1): 12潘亨永, 何江达, 张林. 强度储备法在岩质高边坡稳定性分析中的应用. 四川联合大学学报(工程科学版), 1998, 2(1):12 [24] Tang F, Zheng Y R. Effect on safety factors in different definitions based on strength margin. J Civ Archit Environ Eng, 2009, 31(3): 61唐芬, 郑颖人. 强度储备安全系数不同定义对稳定系数的影响. 土木建筑与环境工程, 2009, 31(3):61 [25] Wu S C, Han L Q, Li Z P, et al. Discussion on the methods for determining slope safety factor based on stress state of the sliding surface. J China Univ Min Technol, 2018, 47(4): 719吴顺川, 韩龙强, 李志鹏, 等. 基于滑面应力状态的边坡安全系数确定方法探讨. 中国矿业大学学报, 2018, 47(4):719 [26] Zheng H, Tian B, Liu D F, et al. On definitions of safety factor of slope stability analysis with finite element method. Chin J Rock Mech Eng, 2005, 24(13): 2225 doi: 10.3321/j.issn:1000-6915.2005.13.004郑宏, 田斌, 刘德富, 等. 关于有限元边坡稳定性分析中安全系数的定义问题. 岩石力学与工程学报, 2005, 24(13):2225 doi: 10.3321/j.issn:1000-6915.2005.13.004 [27] Huang X G. Similarities and differences between stability factor and safety factor of landslide. J Lanzhou Jiaotong Univ, 2015, 34(6): 32 doi: 10.3969/j.issn.1001-4373.2015.06.007黄先光. 滑坡稳定系数与安全系数的异同. 兰州交通大学学报, 2015, 34(6):32 doi: 10.3969/j.issn.1001-4373.2015.06.007 [28] Zheng Y R, Zhao S Y. Discussion on safety factors of slope and landslide engineering design. Chin J Rock Mech Eng, 2006, 25(9): 1937 doi: 10.3321/j.issn:1000-6915.2006.09.032郑颖人, 赵尚毅. 边(滑)坡工程设计中安全系数的讨论. 岩石力学与工程学报, 2006, 25(9):1937 doi: 10.3321/j.issn:1000-6915.2006.09.032 [29] Lu S Z. Basic conditions and prospect of China’s mine slope research. Met Mine, 1999, 9: 6卢世宗. 我国矿山边坡研究的基本情况和展望. 金属矿山, 1999, 9:6 [30] Read J, Stacey P. Guidelines for Open Pit Slope Design. Collingwood: CSIRO Publishing, 2009 [31] Ministry of Housing and Urban-Rural Development, People’s Republic of China. GB50021—2001 Code for investigation of geotechnical engineering. Beijing: China Architecture & Building Press, 2009中华人民共和国住房和城乡建设部. GB 50021—2001 岩土工程勘察规范. 北京: 中国建筑工业出版社, 2009 [32] The Second Highway Survey and Design Institute of the Ministry of Communications. Subgrade: Highway Design Manual. 2nd Ed. Beijing: China Communications Press, 2004交通部第二公路勘察设计院. 路基: 公路设计手册. 2版. 北京: 人民交通出版社, 2004 [33] Ministry of Water Resources of the People’s Republic of China, People’s Republic of China. SL386—2016 Design Code for Engineered Slopes in Water Resources and Hydropower Projects. Beijing: China Water & Power Press, 2016中华人民共和国水利部. SL386—2016水利水电工程边坡设计规范. 北京: 中国水利水电出版社, 2016 [34] Sun Y K, Ni H C, Yao B K. Stability Analysis of Slope Rock Mass. Beijing: Science Press, 1988孙玉科, 倪会宠, 姚宝魁. 边坡岩体稳定性分析. 北京: 科学出版社, 1988 [35] Ministry of Housing and Urban-Rural Development, People’s Republic of China. GB50197—2015 Code for Design of Open Pit Mine of Coal Industry. Beijing: China Planning Press, 2015中华人民共和国住房和城乡建设部. GB50197—2015煤炭工业露天矿设计规范. 北京: 中国计划出版社, 2015 [36] Wu Z G, Wu S C Probabilistic back analysis method for determining surrounding rock parameters of deep hard rock tunnel, Chin J Eng, 2019, 41(1): 78吴忠广, 吴顺川. 深埋硬岩隧道围岩参数概率反演方法. 工程科学学报, 2019, 41(1): 78 [37] Chen Z Y. Reliability analysis and safety criterion in geotechnical engineering based on the index of safety margin. Chin J Rock Mech Eng, 2018, 37(3): 521陈祖煜. 建立在相对安全率准则基础上的岩土工程可靠度分析与安全判据. 岩石力学与工程学报, 2018, 37(3):521 [38] Wu S C, Han L Q, Cheng Z Q, et al. Study on the limit equilibrium slice method considering characteristics of inter-slice normal forces distribution: The improved Spencer method. Environ Earth Sci, 2019, 78(20): 1 [39] Ministry of Water Resources of the People’s Republic of China, People’s Republic of China. SL386—2007 Design Code for Engineered Slopes in Water Resources and Hydropower Projects. Beijing: China Water & Power Press, 2007中华人民共和国水利部. SL386—2007水利水电工程边坡设计规范. 北京: 中国水利水电出版社, 2007 -