-
摘要: 为从微观角度研究煤尘润湿性影响因素,探究分子结构参数与煤尘润湿性之间的定量关系,选取3种不同煤阶的煤样进行煤质特征分析以及煤尘润湿性接触角测定,同时通过13C核磁共振(13C−NMR)和红外光谱(FTIR)实验,获得了煤分子结构参数,利用SPSS进行煤分子结构参数与接触角的相关性分析,最后,通过MATLAB进行在3种不同类型表面活性剂作用下的煤尘润湿性定量表征方程的构建。结果表明:在不同类型表面活性剂的作用下,影响煤尘润湿性的主要因素不同,主要为: 13C−NMR结构参数中的季碳、亚甲基和次甲基(
$ {\text{f}}_{\text{al}}^{\text{H}} $ )、酚或芳醚碳($ {\text{f}}_{\text{a}}^{\text{P}} $ )、桥接芳碳($ {\text{f}}_{\text{a}}^{\text{B}} $ ),FTIR结构参数中的酯基(−COO−)、醚基(−O−)、羰基(C=O),可依据构建的定量表征方程,利用煤尘微观分子结构数据,快速进行煤尘润湿性的表征,进一步丰富了煤尘润湿的微观机理。Abstract: Improving the wettability of coal dust is commonly used for dust control in coal mines. The wettability of coal dust can be affected by various factors. This study aims to explore the quantitative relationship between coal dust molecular structure parameters and wettability at a micro level. This paper selects three samples with different coal ranks, including the Shangwan nonstick coal (BN), Zhaolou gas-fast coal (QF), and Yangquan anthracite coal (WY), which were crushed to coal dust with a particle size of less than 200 mesh (74 μm). Three different types of surfactants, i.e., alkylphenol polyoxyethylene ether (OP-10), sodium diethylhexyl sulfosuccinate (rapid penetrant T), and hexadecyl trimethyl ammonium -chloride (1631), were used for wetting coal dust. After preparing the experimental materials, molecular structure parameters and wetting contact angles of the samples were measured. First, carbon-13 nuclear magnetic resonance (13C-NMR) and infrared spectroscopy (FTIR) tests were conducted to obtain the microscopic molecular structure parameters of the coal samples. The relativity between the contact angle and 13C-NMR structural parameters and the contact angle and FTIR structural parameters were then, respectively, analyzed via the SPSS software to determine the principal factors. Finally, quantitative characterization equations describing the relationship between the wettability and molecular structure parameters of the studied samples were established through multiple linear regressions. Results reveal that under the action of different surfactants, the main factors affecting the wettability of coal dust are different. These factors mainly include quaternary carbon ($ {\text{f}}_{\text{al}}^{\text{}\text{H}} $ ), oxygen-connecting aliphatic carbon ($ {\text{f}}_{\text{a}}^{\text{}\text{P}} $ ), and aromatic bridge carbon ($ {\text{f}}_{\text{a}}^{\text{}\text{B}} $ ) in 13C−NMR experiments and the ester group (−COO−), ether group (−O−), and carbonyl group (C=O) in FTIR experiments. The quantitative characterization equations established in this study provide a micro insight to understanding the affecting mechanism of coal dust wettability, which could facilitate the selection of surfactants and improve the reduction efficiency of coal dust.-
Key words:
- coal dust /
- wettability /
- 13C−NMR /
- FTIR /
- quantitative characterization
-
图 3 煤样碳结构参数变化。(a)
$ {\text{f}}_{\text{a}} $ 、$ {\text{f}}_{\text{a}}^{\text{}\text{C}} $ ;(b)$ {\text{f}}_{\text{a}}^{\text{}\text{H}} $ 、$ {\text{f}}_{\text{a}}^{\text{}\text{N}} $ ;(c)$ {\text{f}}_{\text{a}}^{\text{}\text{P}} $ 、$ {\text{f}}_{\text{a}}^{\text{}\text{S}} $ 、$ {\text{f}}_{\text{a}}^{\text{}\text{B}} $ ;(d)$ {\text{f}}_{\text{al}}^{\text{}\text{*}} $ 、$ {\text{f}}_{\text{al}}^{\text{}\text{H}} $ 、$ {\text{f}}_{\text{al}}^{\text{}\text{O}} $ Figure 3. Carbon structural parameters chart of coal dust: (a)
$ {\text{f}}_{\text{a}} $ ,$ {\text{f}}_{\text{a}}^{\text{}\text{C}} $ ; (b)$ {\text{f}}_{\text{a}}^{\text{}\text{H}} $ ,$ {\text{f}}_{\text{a}}^{\text{}\text{N}} $ ; (c)$ {\text{f}}_{\text{a}}^{\text{}\text{P}} $ ,$ {\text{f}}_{\text{a}}^{\text{}\text{S}} $ ,$ {\text{f}}_{\text{a}}^{\text{}\text{B}} $ ; (d)$ {\text{f}}_{\text{al}}^{\text{}\text{*}} $ ,$ {\text{}\text{f}}_{\text{al}}^{\text{}\text{H}} $ ,$ {\text{f}}_{\text{al}}^{\text{}\text{O}} $ 图 5 不粘煤、气肥煤、无烟煤的FTIR分峰图。(a)不粘煤FTIR分峰图:波数为700~900 cm−1;(b)不粘煤FTIR分峰图:波数为1000~1800 cm−1;(c)不粘煤FTIR分峰图:波数为2800~3000 cm−1;(d)气肥煤FTIR分峰图:波数为700~900 cm−1;(e)气肥煤FTIR分峰图:波数为1000~1800 cm−1;(f)气肥煤FTIR分峰图:波数为2800~3000 cm−1;(g)无烟煤FTIR分峰图:波数为700~900 cm−1;(h)无烟煤FTIR分峰图:波数为1000~1800 cm−1;(i)无烟煤FTIR分峰图:波数为2800~3000 cm−1
Figure 5. FTIR peak fitting diagram of BN, QF and WY:(a) FTIR peak fitting diagram of BN with wave number of 700–900 cm−1; (b) FTIR peak fitting diagram of BN with wave number of 1000–1800 cm−1; (c) FTIR peak fitting diagram of BN with wave number of 2800–3000 cm−1; (d) FTIR peak fitting diagram of QF with wave number of 700–900 cm−1; (e) FTIR peak fitting diagram of QF with wave number of 1000–1800 cm−1; (f) FTIR peak fitting diagram of QF with wave number of 2800–3000 cm−1; (g) FTIR peak fitting diagram of WY with wave number of 700–900 cm−1; (h) FTIR peak fitting diagram of WY with wave number of 1000–1800 cm−1; (i) FTIR peak fitting diagram of WY with wave number of 2800–3000 cm−1
表 1 煤样的工业分析和元素分析(质量分数)
Table 1. Industry analysis and elementary analysis of the coal sample
% Coal sample Industry analysis Elemental analysis Mad Ad Vdaf FCad Cdaf Odaf Hdaf Ndaf Sdaf BN 4.83 2.56 32.93 59.68 81.50 10.6 5.48 1.51 0.65 QF 1.57 7.76 31.62 59.05 82.71 9.61 5.35 1.70 0.58 WY 1.25 7.30 20. 50 70.95 92.35 2.27 3.51 0.91 0.80 表 2 煤尘润湿性接触角测定结果
Table 2. Results of wettability contact angle measurement of coal dust
Coal sample Contact angle /(°) Distilled water OP−10 Rapid penetrant T 1631 BN 52.73 22.16 11.56 42.35 QF 68.16 27.17 13.78 40.27 WY 74.98 13.29 14.98 26.36 表 3 煤样13C−NMR结构参数表
Table 3. NMR structure parameters of coal dust
Coal sample $ {f}_{\text{a}} $ $ {\text{f}}_{\text{a}}^{\text{}\text{C}} $ $ {\text{f}}_{\text{a}}^{\text{}\text{'}\text{}} $ $ {\text{f}}_{\text{a}}^{\text{}\text{H}} $ $ {\text{f}}_{\text{a}}^{\text{}\text{N}} $ $ {\text{f}}_{\text{a}}^{\text{}\text{B}} $ $ {\text{f}}_{\text{a}}^{\text{}\text{S}} $ $ {\text{f}}_{\text{a}}^{\text{}\text{P}} $ $ {\text{f}}_{\text{al}} $ $ {\text{f}}_{\text{al}}^{\text{}\text{*}} $ $ {\text{f}}_{\text{al}}^{\text{}\text{H}} $ $ {\text{f}}_{\text{al}}^{\text{}\text{O}} $ BN 0.818 0.029 0.789 0.544 0.245 0.149 0 0.095 0.182 0.066 0.115 0.001 QF 0.679 0.012 0.667 0.476 0.191 0.128 0.034 0.029 0.321 0.089 0.191 0.041 WY 0.898 0.026 0.872 0.579 0.293 0.224 0.069 0 0.102 0.042 0.035 0.025 表 4 各煤样红外结构参数含量
Table 4. Infrared structure parameter content of each coal sample
% Coal sample Infrared structure parameter content of coal sample Aromatic hydrocarbon Aliphatic hydrocarbon C−O C=O −O− −OH −COO− BN 3.957 1.677 1.925 5.095 5.327 1.069 0.060 QF 11.270 7.367 8.591 2.916 2.422 0.622 0.091 WY 4.984 0.497 2.890 0.073 0.250 0.540 0.142 表 5 OP−10作用下的煤样13C−NMR结构参数与润湿性相关性分析
Table 5. Correlation analysis of 13C−NMR structural parameters and wettability of OP−10
Correlation factors Correlation between factors Contact angle $ {\text{f}}_{\text{a}}^{\text{}\text{C}} $ $ {\text{f}}_{\text{a}}^{\text{}\text{'}} $ $ {\text{f}}_{\text{a}}^{\text{}\text{H}} $ $ {\text{f}}_{\text{a}}^{\text{}\text{N}} $ $ {\text{f}}_{\text{a}}^{\text{}\text{P}} $ $ {\text{f}}_{\text{a}}^{\text{}\text{S}} $ $ {\text{f}}_{\text{a}}^{\text{}\text{B}} $ $ {\text{f}}_{\text{al}}^{\text{}\text{*}} $ $ {\text{f}}_{\text{al}}^{\text{}\text{H}} $ $ {\text{f}}_{\text{al}}^{\text{}\text{O}} $ Contact angle 1 −0.661 −0.967 −0.942 −0.981 0.442 −0.637 −0.988 0.989 0.990 0.247 表 6 OP−10作用下的煤尘FTIR结构参数与润湿性的相关性分析
Table 6. Correlation analysis of FTIR structural parameters and wettability of OP−10
Correlation factors Correlation between factors Contact angle Aromatic hydrocarbon Aliphatic hydrocarbon C—O C=O —O— —OH —COO— Contact angle 1 0.687 −0.867 0.684 0.688 0.564 0.299 −0.997 表 7 煤尘润湿性主要影响因素
Table 7. Main impact factors of coal dust wettability
Surfactant Influencing factors (13C−NMR parameters) Influencing factors (FTIR parameters) OP−10 $ {\text{f}}_{\text{a}}^{\text{}\text{B}} $(−) $ {\text{f}}_{\text{al}}^{\text{}\text{H}} $(+) —COO—(−)* Aliphatic hydrocarbon (−) Rapid penetrant T $ {\text{f}}_{\text{a}}^{\text{}\text{P}} $(−)* $ {\text{f}}_{\text{a}}^{\text{}\text{S}} $(+) —O—(+) —OH(−) 1631 $ {\text{f}}_{\text{a}}^{\text{}\text{S}} $(−) $ {\text{f}}_{\text{a}}^{\text{}\text{B}} $(−) C=O(+) —O—(−) -
参考文献
[1] Chatterjee S, Dash A, Bandopadhyay S. Ensemble support vector machine algorithm for reliability estimation of a mining machine. Qual Reliab Eng Int, 2015, 31(8): 1503 doi: 10.1002/qre.1686 [2] Liu S H, Cheng Y F, Meng X R, et al. Influence of particle size polydispersity on coal dust explosibility. J Loss Prev Process Ind, 2018, 56: 444 doi: 10.1016/j.jlp.2018.10.005 [3] Dodson J, Li X Q, Sun N, et al. Use of coal in the bronze age in China. Holocene, 2014, 24(5): 525 doi: 10.1177/0959683614523155 [4] Weng A Q, Yuan S J, Wang X N, et al. Study on application of surfactant compound in coal seam water injection for dust reduction. China Saf Sci J, 2020, 30(10): 90翁安琦, 袁树杰, 王晓楠, 等. 煤层注水降尘中表面活性剂复配应用研究. 中国安全科学学报, 2020, 30(10):90 [5] Tao Z, Wu L M, Zhang Y F, et al. Preparation and properties of biomass porous carbon composite phase change materials. Chin J Eng, 2020, 42(1): 113陶璋, 伍玲梅, 张亚飞, 等. 生物质多孔碳基复合相变材料制备及性能. 工程科学学报, 2020, 42(1):113 [6] Yin S H, Wang L M, Wu A X, et al. Progress of research in copper bioleaching technology in China. Chin J Eng, 2019, 41(2): 143尹升华, 王雷鸣, 吴爱祥, 等. 我国铜矿微生物浸出技术的研究进展. 工程科学学报, 2019, 41(2):143 [7] Zhao Z B, Yang C, Sun C Y, et al. Experimental study of coal dust wettability. J China Coal Soc, 2011, 36(3): 442赵振保, 杨晨, 孙春燕, 等. 煤尘润湿性的实验研究. 煤炭学报, 2011, 36(3):442 [8] Cheng W M, Xue J, Zhou G, et al. Study of coal dust wettability based on FTIR. J China Coal Soc, 2014, 39(11): 2256程卫民, 薛娇, 周刚, 等. 基于红外光谱的煤尘润湿性. 煤炭学报, 2014, 39(11):2256 [9] Zhou G, Cheng W M, Xu C C, et al. Characteristic analysis of 13C-NMR for the wettability difference of coal dust with diverse degrees of metamorphism. J China Coal Soc, 2015, 40(12): 2849周刚, 程卫民, 徐翠翠, 等. 不同变质程度煤尘润湿性差异的13C-NMR特征解析. 煤炭学报, 2015, 40(12):2849 [10] Xu H H, Li M, Shu X Q, et al. Analysis on moist performance measuring technology of coal dust. Coal Sci Technol, 2009, 37(10): 47徐海宏, 李满, 舒新前, 等. 煤尘润湿性能测试技术分析. 煤炭科学技术, 2009, 37(10):47 [11] Wang S Q, Tang Y G, Chen H, et al. Chemical structural transformations of different coal components at the similar coal rank by HRTEM in situ heating. Fuel, 2018, 218: 140 doi: 10.1016/j.fuel.2018.01.024 [12] Guo D Y, Ye J W, Wang Q B, et al. FTIR and 13C NMR characterizations for deformed coal in Pingdingshan mining. J China Coal Soc, 2016, 41(12): 3040郭德勇, 叶建伟, 王启宝, 等. 平顶山矿区构造煤傅里叶红外光谱和13C核磁共振研究. 煤炭学报, 2016, 41(12):3040 [13] Zhou G, Xu C C, Qiu H. Analysis of the low wettability about the bituminous coal dust with medium metamorphic grade based on NMR and XPS experiment. Chem Ind Eng Prog, 2016, 35(11): 3441周刚, 徐翠翠, 邱晗. 基于核磁-能谱实验的中变质烟煤煤尘低润湿性分析. 化工进展, 2016, 35(11):3441 [14] Ping A, Xia W C, Peng Y L, et al. Construction of bituminous coal vitrinite and inertinite molecular assisted by 13C-NMR, FTIR and XPS. J Mol Struct, 2020, 1222: 128959 doi: 10.1016/j.molstruc.2020.128959 [15] Yao Q G, Xu C C, Zhang Y S, et al. Micromechanism of coal dust wettability and its effect on the selection and development of dust suppressants. Process Saf Environ Prot, 2017, 111: 726 doi: 10.1016/j.psep.2017.08.037 [16] Qin T, Jiang S G, Zhang W Q. Research progress on coal wettability. Saf Coal Mines, 2017, 48(9): 163秦桐, 蒋曙光, 张卫清. 煤的润湿性研究进展. 煤矿安全, 2017, 48(9):163 [17] Zheng L, Liu Z Q, Li D W, et al. Micromechanism analysis of surfactant wetting of coal based on 13C NMR experiments. ACS Omega, 2021, 6(2): 1378 doi: 10.1021/acsomega.0c05005 [18] Su X B, Si Q, Song J X. Characteristics of coal Raman spectrum. J China Coal Soc, 2016, 41(5): 1197苏现波, 司青, 宋金星. 煤的拉曼光谱特征. 煤炭学报, 2016, 41(5):1197 [19] Fan S L, Li Y B, Song D Y, et al. Macromolecular structure evolution mechanism of tectonically deformed coal under different deformation mechanisms. Coal Sci Technol, 2019, 47(11): 239范顺利, 李云波, 宋党育, 等. 不同变形机制下构造煤大分子结构演化机理. 煤炭科学技术, 2019, 47(11):239 [20] An W B, Wang L G. Mechanical properties and modification of coal under the action of surfactant. J China Coal Soc, 2020, 45(12): 4074安文博, 王来贵. 表面活性剂作用下煤体力学特性及改性规律. 煤炭学报, 2020, 45(12):4074 [21] Cheng W M, Xu C C, Zhou G. Evolution law of carbon and oxygen groups on coal surface with increasing metamorphic grade and its effect on wettability. J Fuel Chem Technol, 2016, 44(3): 295 doi: 10.3969/j.issn.0253-2409.2016.03.006程卫民, 徐翠翠, 周刚. 煤尘表面碳、氧基团随变质增加的演化规律及其对润湿性的影响. 燃料化学学报, 2016, 44(3):295 doi: 10.3969/j.issn.0253-2409.2016.03.006 [22] Wang P F, Tan X H, Zhang L Y, et al. Influence of particle diameter on the wettability of coal dust and the dust suppression efficiency via spraying. Process Saf Environ Prot, 2019, 132: 189 doi: 10.1016/j.psep.2019.09.031 [23] Feng L, Zhao G Y, Zhao Y Y, et al. Construction of the molecular structure model of the Shengli lignite using TG-GC/MS and FTIR spectrometry data. Fuel, 2017, 203: 924 doi: 10.1016/j.fuel.2017.04.112 [24] Liu J X, Jiang Y Z, Yao W, et al. Molecular characterization of Henan anthracite coal. Energy Fuels, 2019, 33(7): 6215 doi: 10.1021/acs.energyfuels.9b01061 [25] Ma R J, Zhang S, Hou D D, et al. Model construction and optimization of molecule structure of high-rank coal in Feng County, Shaanxi Province. J China Coal Soc, 2019, 44(6): 1827马汝嘉, 张帅, 侯丹丹, 等. 陕西凤县高煤级煤分子结构模型的构建与结构优化. 煤炭学报, 2019, 44(6):1827 [26] Guo D Y, Guo X J, Liu Q J, et al. Study of molecular structure evolution and dynamic metamorphism of bituminous deformed coal. J China Univ Min Technol, 2019, 48(5): 1036郭德勇, 郭晓洁, 刘庆军, 等. 烟煤级构造煤分子结构演化及动力变质作用研究. 中国矿业大学学报, 2019, 48(5):1036 [27] Hao P Y, Meng Y J, Zeng F G, et al. Quantitative study of chemical structures of different rank coals based on infrared spectroscopy. Spectrosc Spectr Anal, 2020, 40(3): 787郝盼云, 孟艳军, 曾凡桂, 等. 红外光谱定量研究不同煤阶煤的化学结构. 光谱学与光谱分析, 2020, 40(3):787 [28] Zhang L, Li B, Xia Y C, et al. Wettability modification of Wender lignite by adsorption of dodecyl poly ethoxylated surfactants with different degree of ethoxylation: A molecular dynamics simulation study. J Mol Graph Model, 2017, 76: 106 doi: 10.1016/j.jmgm.2017.06.028 [29] Wang X N, Yuan S J, Jiang B Y. Experimental investigation of the wetting ability of surfactants to coals dust based on physical chemistry characteristics of the different coal samples. Adv Powder Technol, 2019, 30(8): 1696 doi: 10.1016/j.apt.2019.05.021 [30] Li J Y, Li K Q. Influence factors of coal surface wettability. J China Coal Soc, 2016, 41(Suppl 2): 448李娇阳, 李凯琦. 煤表面润湿性的影响因素. 煤炭学报, 2016, 41(增刊2): 448 -