• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于13C−NMR和FTIR的煤尘润湿性定量表征

林清侠 汪澍 金龙哲 欧盛南

林清侠, 汪澍, 金龙哲, 欧盛南. 基于13C−NMR和FTIR的煤尘润湿性定量表征[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.03.23.001
引用本文: 林清侠, 汪澍, 金龙哲, 欧盛南. 基于13C−NMR和FTIR的煤尘润湿性定量表征[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.03.23.001
LIN Qing-xia, WANG Shu, JIN Long-zhe, OU Sheng-nan. Quantitative characterization of coal dust wettability based on 13C−NMR and FTIR[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.03.23.001
Citation: LIN Qing-xia, WANG Shu, JIN Long-zhe, OU Sheng-nan. Quantitative characterization of coal dust wettability based on 13C−NMR and FTIR[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.03.23.001

基于13C−NMR和FTIR的煤尘润湿性定量表征

doi: 10.13374/j.issn2095-9389.2021.03.23.001
基金项目: 十三五国家重点研发计划重点专项资助项目(2017YFC0805207);国家自然科学基金资助项目(51874015)
详细信息
    通讯作者:

    E-mail: ustbwangshu@ustb.edu.cn

  • 中图分类号: TD714

Quantitative characterization of coal dust wettability based on 13C−NMR and FTIR

More Information
  • 摘要: 为从微观角度研究煤尘润湿性影响因素,探究分子结构参数与煤尘润湿性之间的定量关系,选取3种不同煤阶的煤样进行煤质特征分析以及煤尘润湿性接触角测定,同时通过13C核磁共振(13C−NMR)和红外光谱(FTIR)实验,获得了煤分子结构参数,利用SPSS进行煤分子结构参数与接触角的相关性分析,最后,通过MATLAB进行在3种不同类型表面活性剂作用下的煤尘润湿性定量表征方程的构建。结果表明:在不同类型表面活性剂的作用下,影响煤尘润湿性的主要因素不同,主要为: 13C−NMR结构参数中的季碳、亚甲基和次甲基($ {\text{f}}_{\text{al}}^{\text{H}} $)、酚或芳醚碳($ {\text{f}}_{\text{a}}^{\text{P}} $)、桥接芳碳($ {\text{f}}_{\text{a}}^{\text{B}} $),FTIR结构参数中的酯基(−COO−)、醚基(−O−)、羰基(C=O),可依据构建的定量表征方程,利用煤尘微观分子结构数据,快速进行煤尘润湿性的表征,进一步丰富了煤尘润湿的微观机理。

     

  • 图  1  实验与数据处理流程图

    Figure  1.  Experiment and data processing flowchart

    图  2  不同煤样的13C−NMR分峰拟合图。(a)不粘煤;(b)气肥煤;(c)无烟煤

    Figure  2.  13C-NMR peak fitting diagrams of coal dust with different degrees of metamorphism: (a) BN; (b) QF; (c) WY

    图  3  煤样碳结构参数变化。(a)$ {\text{f}}_{\text{a}} $$ {\text{f}}_{\text{a}}^{\text{}\text{C}} $;(b)$ {\text{f}}_{\text{a}}^{\text{}\text{H}} $$ {\text{f}}_{\text{a}}^{\text{}\text{N}} $;(c)$ {\text{f}}_{\text{a}}^{\text{}\text{P}} $$ {\text{f}}_{\text{a}}^{\text{}\text{S}} $$ {\text{f}}_{\text{a}}^{\text{}\text{B}} $;(d)$ {\text{f}}_{\text{al}}^{\text{}\text{*}} $$ {\text{f}}_{\text{al}}^{\text{}\text{H}} $$ {\text{f}}_{\text{al}}^{\text{}\text{O}} $

    Figure  3.  Carbon structural parameters chart of coal dust: (a) $ {\text{f}}_{\text{a}} $, $ {\text{f}}_{\text{a}}^{\text{}\text{C}} $; (b) $ {\text{f}}_{\text{a}}^{\text{}\text{H}} $, $ {\text{f}}_{\text{a}}^{\text{}\text{N}} $; (c) $ {\text{f}}_{\text{a}}^{\text{}\text{P}} $, $ {\text{f}}_{\text{a}}^{\text{}\text{S}} $, $ {\text{f}}_{\text{a}}^{\text{}\text{B}} $; (d) $ {\text{f}}_{\text{al}}^{\text{}\text{*}} $,$ {\text{}\text{f}}_{\text{al}}^{\text{}\text{H}} $, $ {\text{f}}_{\text{al}}^{\text{}\text{O}} $

    图  4  各煤样红外光谱图

    Figure  4.  Infrared spectrogram of each coal sample

    图  5  不粘煤、气肥煤、无烟煤的FTIR分峰图。(a)不粘煤FTIR分峰图:波数为700~900 cm−1;(b)不粘煤FTIR分峰图:波数为1000~1800 cm−1;(c)不粘煤FTIR分峰图:波数为2800~3000 cm−1;(d)气肥煤FTIR分峰图:波数为700~900 cm−1;(e)气肥煤FTIR分峰图:波数为1000~1800 cm−1;(f)气肥煤FTIR分峰图:波数为2800~3000 cm−1;(g)无烟煤FTIR分峰图:波数为700~900 cm−1;(h)无烟煤FTIR分峰图:波数为1000~1800 cm−1;(i)无烟煤FTIR分峰图:波数为2800~3000 cm−1

    Figure  5.  FTIR peak fitting diagram of BN, QF and WY:(a) FTIR peak fitting diagram of BN with wave number of 700–900 cm−1; (b) FTIR peak fitting diagram of BN with wave number of 1000–1800 cm−1; (c) FTIR peak fitting diagram of BN with wave number of 2800–3000 cm−1; (d) FTIR peak fitting diagram of QF with wave number of 700–900 cm−1; (e) FTIR peak fitting diagram of QF with wave number of 1000–1800 cm−1; (f) FTIR peak fitting diagram of QF with wave number of 2800–3000 cm−1; (g) FTIR peak fitting diagram of WY with wave number of 700–900 cm−1; (h) FTIR peak fitting diagram of WY with wave number of 1000–1800 cm−1; (i) FTIR peak fitting diagram of WY with wave number of 2800–3000 cm−1

    图  6  煤样芳香烃、脂肪烃、含氧官能团变化

    Figure  6.  Aromatic hydrocarbon, aliphatic hydrocarbon, and oxygen-containing functional group chart of the coal sample

    表  1  煤样的工业分析和元素分析(质量分数)

    Table  1.   Industry analysis and elementary analysis of the coal sample %

    Coal sampleIndustry analysis Elemental analysis
    MadAdVdafFCad CdafOdafHdafNdafSdaf
    BN4.832.5632.9359.68 81.5010.65.481.510.65
    QF1.577.7631.6259.0582.719.615.351.700.58
    WY1.257.3020. 5070.9592.352.273.510.910.80
    下载: 导出CSV

    表  2  煤尘润湿性接触角测定结果

    Table  2.   Results of wettability contact angle measurement of coal dust

    Coal sampleContact angle /(°)
    Distilled waterOP−10Rapid penetrant T1631
    BN52.7322.1611.5642.35
    QF68.1627.1713.7840.27
    WY74.9813.2914.9826.36
    下载: 导出CSV

    表  3  煤样13C−NMR结构参数表

    Table  3.   NMR structure parameters of coal dust

    Coal sample$ {f}_{\text{a}} $$ {\text{f}}_{\text{a}}^{\text{}\text{C}} $$ {\text{f}}_{\text{a}}^{\text{}\text{'}\text{}} $$ {\text{f}}_{\text{a}}^{\text{}\text{H}} $$ {\text{f}}_{\text{a}}^{\text{}\text{N}} $$ {\text{f}}_{\text{a}}^{\text{}\text{B}} $$ {\text{f}}_{\text{a}}^{\text{}\text{S}} $$ {\text{f}}_{\text{a}}^{\text{}\text{P}} $$ {\text{f}}_{\text{al}} $$ {\text{f}}_{\text{al}}^{\text{}\text{*}} $$ {\text{f}}_{\text{al}}^{\text{}\text{H}} $$ {\text{f}}_{\text{al}}^{\text{}\text{O}} $
    BN0.8180.0290.7890.5440.2450.14900.0950.1820.0660.1150.001
    QF0.6790.0120.6670.4760.1910.1280.0340.0290.3210.0890.1910.041
    WY0.8980.0260.8720.5790.2930.2240.06900.1020.0420.0350.025
    下载: 导出CSV

    表  4  各煤样红外结构参数含量

    Table  4.   Infrared structure parameter content of each coal sample %

    Coal sampleInfrared structure parameter content of coal sample
    Aromatic hydrocarbonAliphatic hydrocarbonC−OC=O−O−−OH−COO−
    BN3.9571.6771.9255.0955.3271.0690.060
    QF11.2707.3678.5912.9162.4220.6220.091
    WY4.9840.4972.8900.0730.2500.5400.142
    下载: 导出CSV

    表  5  OP−10作用下的煤样13C−NMR结构参数与润湿性相关性分析

    Table  5.   Correlation analysis of 13C−NMR structural parameters and wettability of OP−10

    Correlation factorsCorrelation between factors
    Contact angle$ {\text{f}}_{\text{a}}^{\text{}\text{C}} $$ {\text{f}}_{\text{a}}^{\text{}\text{'}} $$ {\text{f}}_{\text{a}}^{\text{}\text{H}} $$ {\text{f}}_{\text{a}}^{\text{}\text{N}} $$ {\text{f}}_{\text{a}}^{\text{}\text{P}} $$ {\text{f}}_{\text{a}}^{\text{}\text{S}} $$ {\text{f}}_{\text{a}}^{\text{}\text{B}} $$ {\text{f}}_{\text{al}}^{\text{}\text{*}} $$ {\text{f}}_{\text{al}}^{\text{}\text{H}} $$ {\text{f}}_{\text{al}}^{\text{}\text{O}} $
    Contact angle1−0.661−0.967−0.942−0.9810.442−0.637−0.9880.9890.9900.247
    下载: 导出CSV

    表  6  OP−10作用下的煤尘FTIR结构参数与润湿性的相关性分析

    Table  6.   Correlation analysis of FTIR structural parameters and wettability of OP−10

    Correlation factorsCorrelation between factors
    Contact angleAromatic hydrocarbonAliphatic hydrocarbonC—OC=O—O——OH—COO—
    Contact angle10.687−0.8670.6840.6880.5640.299−0.997
    下载: 导出CSV

    表  7  煤尘润湿性主要影响因素

    Table  7.   Main impact factors of coal dust wettability

    SurfactantInfluencing factors (13C−NMR parameters)Influencing factors (FTIR parameters)
    OP−10$ {\text{f}}_{\text{a}}^{\text{}\text{B}} $(−)$ {\text{f}}_{\text{al}}^{\text{}\text{H}} $(+)—COO—(−)*Aliphatic hydrocarbon (−)
    Rapid penetrant T$ {\text{f}}_{\text{a}}^{\text{}\text{P}} $(−)*$ {\text{f}}_{\text{a}}^{\text{}\text{S}} $(+)—O—(+)—OH(−)
    1631$ {\text{f}}_{\text{a}}^{\text{}\text{S}} $(−)$ {\text{f}}_{\text{a}}^{\text{}\text{B}} $(−)C=O(+)—O—(−)
    下载: 导出CSV
  • [1] Chatterjee S, Dash A, Bandopadhyay S. Ensemble support vector machine algorithm for reliability estimation of a mining machine. Qual Reliab Eng Int, 2015, 31(8): 1503 doi: 10.1002/qre.1686
    [2] Liu S H, Cheng Y F, Meng X R, et al. Influence of particle size polydispersity on coal dust explosibility. J Loss Prev Process Ind, 2018, 56: 444 doi: 10.1016/j.jlp.2018.10.005
    [3] Dodson J, Li X Q, Sun N, et al. Use of coal in the bronze age in China. Holocene, 2014, 24(5): 525 doi: 10.1177/0959683614523155
    [4] Weng A Q, Yuan S J, Wang X N, et al. Study on application of surfactant compound in coal seam water injection for dust reduction. China Saf Sci J, 2020, 30(10): 90

    翁安琦, 袁树杰, 王晓楠, 等. 煤层注水降尘中表面活性剂复配应用研究. 中国安全科学学报, 2020, 30(10):90
    [5] Tao Z, Wu L M, Zhang Y F, et al. Preparation and properties of biomass porous carbon composite phase change materials. Chin J Eng, 2020, 42(1): 113

    陶璋, 伍玲梅, 张亚飞, 等. 生物质多孔碳基复合相变材料制备及性能. 工程科学学报, 2020, 42(1):113
    [6] Yin S H, Wang L M, Wu A X, et al. Progress of research in copper bioleaching technology in China. Chin J Eng, 2019, 41(2): 143

    尹升华, 王雷鸣, 吴爱祥, 等. 我国铜矿微生物浸出技术的研究进展. 工程科学学报, 2019, 41(2):143
    [7] Zhao Z B, Yang C, Sun C Y, et al. Experimental study of coal dust wettability. J China Coal Soc, 2011, 36(3): 442

    赵振保, 杨晨, 孙春燕, 等. 煤尘润湿性的实验研究. 煤炭学报, 2011, 36(3):442
    [8] Cheng W M, Xue J, Zhou G, et al. Study of coal dust wettability based on FTIR. J China Coal Soc, 2014, 39(11): 2256

    程卫民, 薛娇, 周刚, 等. 基于红外光谱的煤尘润湿性. 煤炭学报, 2014, 39(11):2256
    [9] Zhou G, Cheng W M, Xu C C, et al. Characteristic analysis of 13C-NMR for the wettability difference of coal dust with diverse degrees of metamorphism. J China Coal Soc, 2015, 40(12): 2849

    周刚, 程卫民, 徐翠翠, 等. 不同变质程度煤尘润湿性差异的13C-NMR特征解析. 煤炭学报, 2015, 40(12):2849
    [10] Xu H H, Li M, Shu X Q, et al. Analysis on moist performance measuring technology of coal dust. Coal Sci Technol, 2009, 37(10): 47

    徐海宏, 李满, 舒新前, 等. 煤尘润湿性能测试技术分析. 煤炭科学技术, 2009, 37(10):47
    [11] Wang S Q, Tang Y G, Chen H, et al. Chemical structural transformations of different coal components at the similar coal rank by HRTEM in situ heating. Fuel, 2018, 218: 140 doi: 10.1016/j.fuel.2018.01.024
    [12] Guo D Y, Ye J W, Wang Q B, et al. FTIR and 13C NMR characterizations for deformed coal in Pingdingshan mining. J China Coal Soc, 2016, 41(12): 3040

    郭德勇, 叶建伟, 王启宝, 等. 平顶山矿区构造煤傅里叶红外光谱和13C核磁共振研究. 煤炭学报, 2016, 41(12):3040
    [13] Zhou G, Xu C C, Qiu H. Analysis of the low wettability about the bituminous coal dust with medium metamorphic grade based on NMR and XPS experiment. Chem Ind Eng Prog, 2016, 35(11): 3441

    周刚, 徐翠翠, 邱晗. 基于核磁-能谱实验的中变质烟煤煤尘低润湿性分析. 化工进展, 2016, 35(11):3441
    [14] Ping A, Xia W C, Peng Y L, et al. Construction of bituminous coal vitrinite and inertinite molecular assisted by 13C-NMR, FTIR and XPS. J Mol Struct, 2020, 1222: 128959 doi: 10.1016/j.molstruc.2020.128959
    [15] Yao Q G, Xu C C, Zhang Y S, et al. Micromechanism of coal dust wettability and its effect on the selection and development of dust suppressants. Process Saf Environ Prot, 2017, 111: 726 doi: 10.1016/j.psep.2017.08.037
    [16] Qin T, Jiang S G, Zhang W Q. Research progress on coal wettability. Saf Coal Mines, 2017, 48(9): 163

    秦桐, 蒋曙光, 张卫清. 煤的润湿性研究进展. 煤矿安全, 2017, 48(9):163
    [17] Zheng L, Liu Z Q, Li D W, et al. Micromechanism analysis of surfactant wetting of coal based on 13C NMR experiments. ACS Omega, 2021, 6(2): 1378 doi: 10.1021/acsomega.0c05005
    [18] Su X B, Si Q, Song J X. Characteristics of coal Raman spectrum. J China Coal Soc, 2016, 41(5): 1197

    苏现波, 司青, 宋金星. 煤的拉曼光谱特征. 煤炭学报, 2016, 41(5):1197
    [19] Fan S L, Li Y B, Song D Y, et al. Macromolecular structure evolution mechanism of tectonically deformed coal under different deformation mechanisms. Coal Sci Technol, 2019, 47(11): 239

    范顺利, 李云波, 宋党育, 等. 不同变形机制下构造煤大分子结构演化机理. 煤炭科学技术, 2019, 47(11):239
    [20] An W B, Wang L G. Mechanical properties and modification of coal under the action of surfactant. J China Coal Soc, 2020, 45(12): 4074

    安文博, 王来贵. 表面活性剂作用下煤体力学特性及改性规律. 煤炭学报, 2020, 45(12):4074
    [21] Cheng W M, Xu C C, Zhou G. Evolution law of carbon and oxygen groups on coal surface with increasing metamorphic grade and its effect on wettability. J Fuel Chem Technol, 2016, 44(3): 295 doi: 10.3969/j.issn.0253-2409.2016.03.006

    程卫民, 徐翠翠, 周刚. 煤尘表面碳、氧基团随变质增加的演化规律及其对润湿性的影响. 燃料化学学报, 2016, 44(3):295 doi: 10.3969/j.issn.0253-2409.2016.03.006
    [22] Wang P F, Tan X H, Zhang L Y, et al. Influence of particle diameter on the wettability of coal dust and the dust suppression efficiency via spraying. Process Saf Environ Prot, 2019, 132: 189 doi: 10.1016/j.psep.2019.09.031
    [23] Feng L, Zhao G Y, Zhao Y Y, et al. Construction of the molecular structure model of the Shengli lignite using TG-GC/MS and FTIR spectrometry data. Fuel, 2017, 203: 924 doi: 10.1016/j.fuel.2017.04.112
    [24] Liu J X, Jiang Y Z, Yao W, et al. Molecular characterization of Henan anthracite coal. Energy Fuels, 2019, 33(7): 6215 doi: 10.1021/acs.energyfuels.9b01061
    [25] Ma R J, Zhang S, Hou D D, et al. Model construction and optimization of molecule structure of high-rank coal in Feng County, Shaanxi Province. J China Coal Soc, 2019, 44(6): 1827

    马汝嘉, 张帅, 侯丹丹, 等. 陕西凤县高煤级煤分子结构模型的构建与结构优化. 煤炭学报, 2019, 44(6):1827
    [26] Guo D Y, Guo X J, Liu Q J, et al. Study of molecular structure evolution and dynamic metamorphism of bituminous deformed coal. J China Univ Min Technol, 2019, 48(5): 1036

    郭德勇, 郭晓洁, 刘庆军, 等. 烟煤级构造煤分子结构演化及动力变质作用研究. 中国矿业大学学报, 2019, 48(5):1036
    [27] Hao P Y, Meng Y J, Zeng F G, et al. Quantitative study of chemical structures of different rank coals based on infrared spectroscopy. Spectrosc Spectr Anal, 2020, 40(3): 787

    郝盼云, 孟艳军, 曾凡桂, 等. 红外光谱定量研究不同煤阶煤的化学结构. 光谱学与光谱分析, 2020, 40(3):787
    [28] Zhang L, Li B, Xia Y C, et al. Wettability modification of Wender lignite by adsorption of dodecyl poly ethoxylated surfactants with different degree of ethoxylation: A molecular dynamics simulation study. J Mol Graph Model, 2017, 76: 106 doi: 10.1016/j.jmgm.2017.06.028
    [29] Wang X N, Yuan S J, Jiang B Y. Experimental investigation of the wetting ability of surfactants to coals dust based on physical chemistry characteristics of the different coal samples. Adv Powder Technol, 2019, 30(8): 1696 doi: 10.1016/j.apt.2019.05.021
    [30] Li J Y, Li K Q. Influence factors of coal surface wettability. J China Coal Soc, 2016, 41(Suppl 2): 448

    李娇阳, 李凯琦. 煤表面润湿性的影响因素. 煤炭学报, 2016, 41(增刊2): 448
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  106
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-23
  • 网络出版日期:  2021-06-25

目录

    /

    返回文章
    返回