• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应力波形对岩石爆生裂纹扩展机制影响的数值模拟

李永祺 梁正召 钱希坤 刘红波

李永祺, 梁正召, 钱希坤, 刘红波. 应力波形对岩石爆生裂纹扩展机制影响的数值模拟[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.04.14.004
引用本文: 李永祺, 梁正召, 钱希坤, 刘红波. 应力波形对岩石爆生裂纹扩展机制影响的数值模拟[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.04.14.004
LI Yong-qi, LIANG Zheng-zhao, QIAN Xi-kun, LIU Hong-bo. Effect of stress waveform on the rock blasting crack propagation mechanism using numerical simulation[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.04.14.004
Citation: LI Yong-qi, LIANG Zheng-zhao, QIAN Xi-kun, LIU Hong-bo. Effect of stress waveform on the rock blasting crack propagation mechanism using numerical simulation[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.04.14.004

应力波形对岩石爆生裂纹扩展机制影响的数值模拟

doi: 10.13374/j.issn2095-9389.2021.04.14.004
基金项目: 国家重点研发计划资助项目(2018YFC1505301);国家自然科学基金资助项目(41977219);煤炭资源与安全开采国家重点实验室开放基金资助项目(KLCRSMI9KFA02)
详细信息
    通讯作者:

    E-mail: LiangZZ@dlut.edu.cn

  • 中图分类号: TG142.71

Effect of stress waveform on the rock blasting crack propagation mechanism using numerical simulation

More Information
  • 摘要: 运用RFPA3D动力分析软件模拟了冲击动力作用下含预制裂纹岩石的裂纹扩展过程,探究了应力波峰值、能量、上升及下降速率对岩石裂纹扩展过程的影响。研究表明动载下岩石裂纹扩展形态受应力波上升速率影响,应力波上升速率越快,孔周边岩石越破碎;应力波能量影响裂纹扩展长度,能量越大裂纹扩展越长,而相同能量条件下,应力波上升速率越小,裂纹扩展距离越远,但孔边破碎程度越弱;上升速率和应力波上升沿能量共同影响着炮孔粉碎区半径。数值模拟结果很好地揭示了不同应力波峰值、能量与上升/下降速率对岩石的破碎机制,在实际爆破作业中可以通过水炮泥封口或者采用空气柱间隔装药结构来延长应力波作用时间,以达到扩大爆破影响范围的目的,而通过选取合适类型与配比的炸药来提升应力波上升速率从而增强孔边破碎效果。

     

  • 图  1  不同炸药形成的应力波。(a)装药结构[14]; (b)炸药配比[15]

    Figure  1.  Stress waves formed by different explosives: (a) explosive charge structure[14]; (b) explosive ratio[15]

    图  2  数值模型

    Figure  2.  Numerical model

    图  3  荷载示意图。 (a)H-1~H-6;(b)F-7~F-12;(c)S-13~S-17;(d)X-18~X-22;(e)N-23~N-27

    Figure  3.  Loads diagram: (a) H-1–H-6; (b) F-7–F-12; (c) S-13–S-17; (d) X-18–X-22; (e) N-23–N-27

    图  4  物理试验与数值模拟结果对比图。(a)物理试验;(b)数值模拟

    Figure  4.  Comparison of (a) physical experiment and (b) numerical simulation

    图  5  荷载 H-3作用下模型最小主应力云图。(a)20 μs;(b)30 μs;(c)40 μs;(d)60 μs;(e)80 μs;(f)120 μs

    Figure  5.  Minimum principal stress under load H-3: (a) 20 μs; (b) 30 μs; (c) 40 μs; (d) 60 μs; (e) 80 μs; (f) 120 μs

    图  6  右翼裂纹扩展尖端受力图

    Figure  6.  Stress on the tip of the right wing crack propagation process

    图  7  不同波形应力波作用下的岩石裂纹扩展演化图像

    Figure  7.  Rock crack propagation under different stress waveforms

    图  8  不同荷载作用下裂纹扩展细节分析。(a)H-2;(b)F-8;(c)H-5;(d)F-11

    Figure  8.  Crack growth analysis under different loads: (a) H-2; (b) F-8; (c) H-5; (d) F-11

    图  9  不同峰值应力波F-7~F-12(相同上升/下降速率)的裂纹扩展规律

    Figure  9.  Crack propagation with different peak stress waves F-7–F-12 (similar rise/fall rates)

    图  10  不同下降速率应力波X-18~X-22(相同上升速率)的裂纹扩展细节分析

    Figure  10.  Detailed analysis of the crack propagation of stress waves X-18–X-22 with different fall rates (similar rise rates)

    图  11  不同峰值作用下主裂纹扩展。(a)H-1~H-6;(b)F-7~F-12

    Figure  11.  Main crack propagation under different peaks: (a) H-1–H-6; (b) F-7–F-12

    图  12  模型累积损伤单元统计图。(a)荷载S-13~S-17;(b)荷载X-18~X-22

    Figure  12.  Model cumulative damage unit statistics: (a) loads S-13–S-17; (b) loads X-18–X-22

    图  13  峰值应力波能量对裂纹扩展长度的影响。(a)主裂纹–峰值荷载;(b)右翼裂纹–峰值荷载;(c)不同峰值荷载的上升速率

    Figure  13.  Effect of the peak stress wave energy on the crack growth length: (a) main crack–peak loads; (b) right flank crack–peak loads; (c) rise rate of different peak loads

    图  14  速率应力波能量对裂纹扩展长度的影响。(a)主裂纹–速率荷载;(b)右翼裂纹–速率荷载;(c)不同速率荷载的上升速率

    Figure  14.  Effect of the rate of the stress wave energy on the crack growth length: (a) main crack–rate loads; (b) right flank crack–ate loads; (c) rise rate of different rate loads

    图  15  荷载N-23~N-27作用下裂纹扩展长度

    Figure  15.  Crack growth length under loads N-23–N-27

    图  16  上升速率(a)和应力波上升沿能量(b)对粉碎区半径的影响

    Figure  16.  Effect of the rise rate (a) and stress wave’s rising edge energy (b) on the radius of the crushing zone

    表  1  材料参数

    Table  1.   Material parameters

    Homogeneity indexElastic modulus / GPaUniaxial compressive strength / MPaDensity / (kg·m−3)Poisson ratioFriction angle / (°)
    54.59011200.2530
    下载: 导出CSV
  • [1] Zhu Z M, Mohanty B, Xie H P. Numerical investigation of blasting-induced crack initiation and propagation in rocks. Int J Rock Mech Min Sci, 2007, 44(3): 412 doi: 10.1016/j.ijrmms.2006.09.002
    [2] Yue Z W, Guo Y, Wang X. Experimental study of crack propagation under blasting load in notched boreholes. Chin J Rock Mech Eng, 2015, 34(10): 2018

    岳中文, 郭洋, 王煦. 切槽孔爆炸载荷下裂纹扩展行为的实验研究. 岩石力学与工程学报, 2015, 34(10):2018
    [3] Yue Z W, Guo Y, Wang X, et al. Influence of empty hole shape on directional fracture controlled blasting of rock. Rock Soil Mech, 2016, 37(2): 376

    岳中文, 郭洋, 王煦, 等. 空孔形状对岩石定向断裂爆破影响规律的研究. 岩土力学, 2016, 37(2):376
    [4] Zhang Z R, Zuo J J, Guo Y X. Effects of empty hole and its defects on the crack propagation under explosive loading. J Vib Shock, 2019, 38(18): 115

    张召冉, 左进京, 郭义先. 爆炸载荷下空孔及其缺陷对裂纹扩展影响机理研究. 振动与冲击, 2019, 38(18):115
    [5] Zhang Z R, Zuo J J, Guo Y X. Crack propagation behavior of empty hole defects under blast load. J Vib Shock, 2020, 39(3): 111

    张召冉, 左进京, 郭义先. 爆炸载荷下空孔缺陷与爆生裂纹扩展行为研究. 振动与冲击, 2020, 39(3):111
    [6] Yang X, Pu C J, Tang X, et al. Experimental study of effects of manual crack on blasting cracks propagation. Blasting, 2014, 31(2): 26 doi: 10.3963/j.issn.1001-487X.2014.02.006

    杨鑫, 蒲传金, 唐雄, 等. 人工裂隙对爆炸裂纹扩展影响的试验研究. 爆破, 2014, 31(2):26 doi: 10.3963/j.issn.1001-487X.2014.02.006
    [7] Yang R S, Su H. Experimental study on crack propagation with pre-crack under explosion load. J China Coal Soc, 2019, 44(2): 482

    杨仁树, 苏洪. 爆炸荷载下含预裂缝的裂纹扩展实验研究. 煤炭学报, 2019, 44(2):482
    [8] Yang R S, Ding C X, Yang L Y, et al. Experimental study on interaction effect of dynamic cracks induced by blast. Blasting, 2016, 33(2): 1 doi: 10.3963/j.issn.1001-487X.2016.02.001

    杨仁树, 丁晨曦, 杨立云, 等. 动态爆生裂纹相互影响的试验研究. 爆破, 2016, 33(2):1 doi: 10.3963/j.issn.1001-487X.2016.02.001
    [9] Yang R S, Zuo J J, Xiao C L, et al. Tests for interaction between static crack and dynamic one under explosion loading. J Vib Shock, 2018, 37(13): 65

    杨仁树, 左进京, 肖成龙, 等. 爆炸载荷作用下静裂纹对运动裂纹扩展影响的实验研究. 振动与冲击, 2018, 37(13):65
    [10] Li T T, Fei A P, Niu X F, et al. Numerical simulation of blasting at different positions of granite by different explosives. Eng Blasting, 2019, 25(4): 8 doi: 10.3969/j.issn.1006-7051.2019.04.002

    李婷婷, 费爱萍, 牛雪峰, 等. 不同炸药对花岗岩不同位置爆破的数值模拟. 工程爆破, 2019, 25(4):8 doi: 10.3969/j.issn.1006-7051.2019.04.002
    [11] Pei H B, Nie J X, Qin J F, et al. Damage effects of explosion of RDX-based aluminized explosives in concrete. Chin J High Press Phys, 2015, 29(1): 23 doi: 10.11858/gywlxb.2015.01.004

    裴红波, 聂建新, 覃剑锋, 等. RDX基含铝炸药在混凝土中爆炸的实验研究. 高压物理学报, 2015, 29(1):23 doi: 10.11858/gywlxb.2015.01.004
    [12] Liu W R. Rational utilization of several industrial explosives in Zhunger open-pit mine. Opencast Min Technol, 2019, 34(6): 51

    刘万荣. 几种工业炸药在准格尔露天矿的合理利用. 露天采矿技术, 2019, 34(6):51
    [13] Yang M H, Xie X H, Zhang N. Influences on the emulsion explosive characteristics of underwater explosions by physically sensitized ways. Coal Mine Blasting, 2008(4): 12

    杨敏会, 谢兴华, 张楠. 物理敏化对乳化炸药水下爆炸特性的影响. 煤矿爆破, 2008(4):12
    [14] Wang W L. Drill Blasting. Beijing: China Coal Industry Press, 1984

    王文龙. 钻眼爆破. 北京: 煤炭工业出版社, 1984
    [15] Zhao Q, Nie J X, Zhang W, et al. Effect of the Al/O ratio on the Al reaction of aluminized RDX-based explosives. Chin Phys B, 2017, 26(5): 054502 doi: 10.1088/1674-1056/26/5/054502
    [16] Donzé F V, Bouchez J, Magnier S A. Modeling fractures in rock blasting. Int J Rock Mech Min Sci, 1997, 34(8): 1153 doi: 10.1016/S1365-1609(97)80068-8
    [17] Ma G W, An X M. Numerical simulation of blasting-induced rock fractures. Int J Rock Mech Min Sci, 2008, 45(6): 966 doi: 10.1016/j.ijrmms.2007.12.002
    [18] Cho S H, Kaneko K. Influence of the applied pressure waveform on the dynamic fracture processes in rock. Int J Rock Mech Min Sci, 2004, 41(5): 771 doi: 10.1016/j.ijrmms.2004.02.006
    [19] Zhong B B, Li H, Zhang Y B. Numerical simulation of dynamic cracks propagation of rock under blasting loading. Explos Shock Waves, 2016, 36(6): 825 doi: 10.11883/1001-1455(2016)06-0825-07

    钟波波, 李宏, 张永彬. 爆炸荷载作用下岩石动态裂纹扩展的数值模拟. 爆炸与冲击, 2016, 36(6):825 doi: 10.11883/1001-1455(2016)06-0825-07
    [20] Yang Y F, Tang C A, Xia K W. Study on crack curving and branching mechanism in quasi-brittle materials under dynamic biaxial loading. Int J Fract, 2012, 177(1): 53 doi: 10.1007/s10704-012-9755-6
    [21] Tang C A, Zhao W. RFPA2D system for rock failure process analysis. Chin J Rock Mech Eng, 1997, 16(5): 507 doi: 10.3321/j.issn:1000-6915.1997.05.018

    唐春安, 赵文. 岩石破裂全过程分析软件系统RFPA2D. 岩石力学与工程学报, 1997, 16(5):507 doi: 10.3321/j.issn:1000-6915.1997.05.018
    [22] Liang Z Z, Xing H, Wang S Y, et al. A three-dimensional numerical investigation of the fracture of rock specimens containing a pre-existing surface flaw. Comput Geotech, 2012, 45: 19 doi: 10.1016/j.compgeo.2012.04.011
    [23] Li B, Chen W Z, Liu X Q, et al. Discrete Element Simulation of Attenuation Law of Blasting Stress Wave // Proceedings of the International Conference on Chemical, Material and Food Engineering. Kunming, 2015: 448
    [24] Lu S S. Research on Dynamic Response and Failure Mode of Tunnel Surrounding Rock under Blasting Loading [Dissertation]. Tianjin: Tianjin University, 2012

    卢珊珊. 爆破荷载作用下隧洞围岩动力响应及破坏模式研究[学位论文]. 天津: 天津大学, 2012
    [25] Zhang Q. Smash districts and expanding of cavities in rock blasting. Explos Shock Waves, 1990, 10(1): 68

    张奇. 岩石爆破的粉碎区及其空腔膨胀. 爆炸与冲击, 1990, 10(1):68
    [26] Leng Z D, Lu W B, Chen M, et al. Improved calculation model for the size of crushed zone around blasthole. Explos Shock Waves, 2015, 35(1): 101 doi: 10.11883/1001-1455(2015)01-0101-07

    冷振东, 卢文波, 陈明, 等. 岩石钻孔爆破粉碎区计算模型的改进. 爆炸与冲击, 2015, 35(1):101 doi: 10.11883/1001-1455(2015)01-0101-07
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  102
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-14
  • 网络出版日期:  2021-08-20

目录

    /

    返回文章
    返回