• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

质子交换膜燃料电池用膜增湿器仿真分析

李志远 李娜 李庆雨 包成 滕越

李志远, 李娜, 李庆雨, 包成, 滕越. 质子交换膜燃料电池用膜增湿器仿真分析[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.04.30.002
引用本文: 李志远, 李娜, 李庆雨, 包成, 滕越. 质子交换膜燃料电池用膜增湿器仿真分析[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.04.30.002
LI Zhi-yuan, LI Na, LI Qing-yu, BAO Cheng, TENG Yue. Performance of a membrane humidifier for a proton exchange membrane fuel cell[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.04.30.002
Citation: LI Zhi-yuan, LI Na, LI Qing-yu, BAO Cheng, TENG Yue. Performance of a membrane humidifier for a proton exchange membrane fuel cell[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.04.30.002

质子交换膜燃料电池用膜增湿器仿真分析

doi: 10.13374/j.issn2095-9389.2021.04.30.002
基金项目: 国家电网有限公司总部资助项目(521205200010)
详细信息
    通讯作者:

    E-mail: baocheng@me.ustb.edu.cn

  • 中图分类号: TK91

Performance of a membrane humidifier for a proton exchange membrane fuel cell

More Information
  • 摘要: 膜增湿器为质子交换膜燃料电池水热管理系统的关键部件,本研究考虑与燃料电池工作条件的强耦合,系统地进行了膜增湿器运行参数和几何参数的敏感性仿真分析。基于Matlab/Simulink建立了膜增湿器稳态数学模型,分析了湿侧和干侧的入口质量流量、温度和压力以及膜厚度和面积对膜增湿器传热量、水分传递量、干侧出口相对湿度和水分传递率的影响。研究表明:提高入口质量流量会提高传热量,并且能有效提高水分传递量,但会使水分传递率和出口相对湿度降低;干湿两侧温度的增加可以使膜中水的扩散系数和水传递量增加,但过高的温度会显著提高水蒸气饱和压力,降低水的活度,进而降低膜含水量,不利于水的传递;压力的变化对传热的影响很小,但总压的提高会使湿侧入口含湿量下降,水分传递量下降,但水分传递率升高;较大的膜面积以及较低的膜厚度能够提高膜水分传递量和水分传递率,可以有效地提高膜增湿器和燃料电池系统水热管理性能。

     

  • 图  1  膜增湿器系统示意图

    Figure  1.  Diagram of a membrane humidifier system

    图  2  qmv,memm2,air,in变化趋势图

    Figure  2.  Variation trends of q and mv,mem with m1,air,in

    图  3  φ2,outεm2,air,in变化趋势图

    Figure  3.  Variation trends of φ2,out and ε with m2,air,in

    图  4  qmv,memT2,in变化趋势图

    Figure  4.  Variation trends of q and mv,mem with T2,in

    图  5  φ2,outεT2,in变化趋势图

    Figure  5.  Variation trends of φ2,out and ε with T2,in

    图  6  qmv,memT1,in变化趋势图

    Figure  6.  Variation trends of q and mv,mem with T1,in

    图  7  φ2,outεT1,in变化趋势图

    Figure  7.  Variation trends of φ2,out and ε with T1,in

    图  8  qmv,memP变化趋势图

    Figure  8.  Variation trends of q and mv,mem with P

    图  9  φ2,outεP变化趋势图

    Figure  9.  Variation trends of φ2,out and ε with P

    图  10  qmv,memδm变化趋势图

    Figure  10.  Variation trends of q and mv,mem with δm

    图  11  φ2,outεδm变化趋势图

    Figure  11.  Variation trends of φ2,out and ε with δm

    图  12  qmv,memA变化趋势图

    Figure  12.  Variation trends of q and mv,mem with A

    图  13  φ2,outεA变化趋势图

    Figure  13.  Variation trends of φ2,out and ε with A

    表  1  工况参数

    Table  1.   Operating parameters

    ParametersValues
    Inlet temperature of wet channel,T1,in/K 353
    Inlet temperature of dry channel,T2,in/K 293
    Gauge pressure of wet channel,P1,in/MPa 0.2
    Gauge pressure of dry channel,P2,in/MPa 0.2
    Mass ratio of wet channel,w(O2):w(H2O):w(N2) 0.2:0.16:0.64
    Mass ratio of dry channel,w(O2):w(N2) 0.233:0.767
    Inlet mass flow rate of wet channel,m1,in/(kg·s–1) 0.0412
    Inlet mass flow rate of dry channel,m2,in/ (kg·s–1) 0.0382
    Membrane thickness,δm/m 5 × 10−5
    Membrane area,A/m2 0.1
    Heat transfer coefficient,k/ (W· m–2·K–1) 100
    Dry density of membrane,ρm,dry/ (kg·m–3) 2000
    Equivalent mass of membrane,Mm,dry/ (kg·mol–1) 1.1
    下载: 导出CSV
  • [1] Zhang T, Wang P Q, Chen H C, et al. A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition. Appl Energy, 2018, 223: 249 doi: 10.1016/j.apenergy.2018.04.049
    [2] Chen H C, Zhao X, Zhang T, et al. The reactant starvation of the proton exchange membrane fuel cells for vehicular applications: A review. Energy Convers Manag, 2019, 182: 282 doi: 10.1016/j.enconman.2018.12.049
    [3] Feng L L, Chen Y, Li J G, et al. Research progress in carbon-based composite molded bipolar plates. Chin J Eng, 2021, 43(5): 585

    冯利利, 陈越, 李吉刚, 等. 碳基复合材料模压双极板研究进展. 工程科学学报, 2021, 43(5):585
    [4] Lin X Y, Xia Y T, Wei S S. Energy management control strategy for plug-in fuel cell electric vehicle based on reinforcement learning algorithm. Chin J Eng, 2019, 41(10): 1332

    林歆悠, 夏玉田, 魏申申. 基于增强学习算法的插电式燃料电池电动汽车能量管理控制策略. 工程科学学报, 2019, 41(10):1332
    [5] Chen D M, Li W, Peng H E. An experimental study and model validation of a membrane humidifier for PEM fuel cell humidification control. J Power Sources, 2008, 180(1): 461 doi: 10.1016/j.jpowsour.2008.02.055
    [6] Vasu G, Tangirala A K, Viswanathan B, et al. Continuous bubble humidification and control of relative humidity of H2 for a PEMFC system. Int J Hydrog Energy, 2008, 33(17): 4640 doi: 10.1016/j.ijhydene.2008.05.051
    [7] Natarajan D, Nguyen T. Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell. J Power Sources, 2003, 115(1): 66 doi: 10.1016/S0378-7753(02)00624-9
    [8] Li H, Tang Y H, Wang Z W, et al. A review of water flooding issues in the proton exchange membrane fuel cell. J Power Sources, 2008, 178(1): 103 doi: 10.1016/j.jpowsour.2007.12.068
    [9] Réguillet V, Vaudrey A, Moutin S, et al. Definition of efficiency criteria for a fuel cell humidifier: Application to a low power proton exchange membrane fuel cell system for negative surrounding temperatures. Appl Therm Eng, 2013, 58(1-2): 382 doi: 10.1016/j.applthermaleng.2013.03.055
    [10] Casalegno A, De Antonellis S, Colombo L, et al. Design of an innovative enthalpy wheel based humidification system for polymer electrolyte fuel cell. Int J Hydrog Energy, 2011, 36(8): 5000 doi: 10.1016/j.ijhydene.2011.01.012
    [11] Pourrahmani H, Moghimi M, Siavashi M. Thermal management in PEMFCs: The respective effects of porous media in the gas flow channel. Int J Hydrog Energy, 2019, 44(5): 3121 doi: 10.1016/j.ijhydene.2018.11.222
    [12] Pourrahmani H, Moghimi M, Siavashi M, et al. Sensitivity analysis and performance evaluation of the PEMFC using wave-like porous ribs. Appl Therm Eng, 2019, 150: 433 doi: 10.1016/j.applthermaleng.2019.01.010
    [13] Pourrahmani H, Siavashi M, Moghimi M. Design optimization and thermal management of the PEMFC using artificial neural networks. Energy, 2019, 182: 443 doi: 10.1016/j.energy.2019.06.019
    [14] Chang Y F, Qin Y Z, Yin Y, et al. Humidification strategy for polymer electrolyte membrane fuel cells-A review. Appl Energy, 2018, 230: 643 doi: 10.1016/j.apenergy.2018.08.125
    [15] Lao X S, Liu Y, Dai C H, et al. Study on heat and mass transfer performance of cathode membrane humidifier in fuel cell system. IOP Conf Ser:Earth Environ Sci, 2020, 581: 012011 doi: 10.1088/1755-1315/581/1/012011
    [16] Yu S, Im S, Kim S, et al. A parametric study of the performance of a planar membrane humidifier with a heat and mass exchanger model for design optimization. Int J Heat Mass Transf, 2011, 54(7-8): 1344 doi: 10.1016/j.ijheatmasstransfer.2010.11.054
    [17] Park S, Oh I H. An analytical model of Nafion™ membrane humidifier for proton exchange membrane fuel cells. J Power Sources, 2009, 188(2): 498 doi: 10.1016/j.jpowsour.2008.12.018
    [18] Hashemi-Valikboni S Z, Ajarostaghi S S M, Delavar M A, et al. Numerical prediction of humidification process in planar porous membrane humidifier of a PEM fuel cell system to evaluate the effects of operating and geometrical parameters. J Therm Anal Calorim, 2020, 141(5): 1687 doi: 10.1007/s10973-020-10058-6
    [19] Chang G F, Xu D, Chang Z H, et al. Modeling and simulation research of membrane humidifier used in fuel cell. J Tongji Univ (Nat Sci), 2017, 45(2): 256

    常国峰, 徐迪, 常志宏, 等. 燃料电池膜增湿器建模及仿真. 同济大学学报(自然科学版), 2017, 45(2):256
    [20] Chen W B, Chang G F, Xu S C. CFD analysis of flow distribution in planar membrane humidifier channel. J Jiamusi Univ (Nat Sci Ed), 2013, 31(5): 660

    陈武斌, 常国峰, 许思传. PEMFC用板式膜增湿器流道流量分配CFD分析. 佳木斯大学学报(自然科学版), 2013, 31(5):660
    [21] Bao C, Ouyang M G, Yi B L. Analysis of the water and thermal management in proton exchange membrane fuel cell systems. Int J Hydrog Energy, 2006, 31(8): 1040 doi: 10.1016/j.ijhydene.2005.12.011
    [22] Afshari E, Baharlou H N. An analytic model of membrane humidifier for proton exchange membrane fuel cell. Energy Equip Syst, 2014, 2(1): 83
    [23] Sabharwal M, Duelk C, Bhatia D. Two-dimensional modeling of a cross flow plate and frame membrane humidifier for fuel cell applications. J Membr Sci, 2012, 409-410: 285 doi: 10.1016/j.memsci.2012.03.066
    [24] Khazaee I, Sabadbafan H. Effect of humidity content and direction of the flow of reactant gases on water management in the 4-serpentine and 1-serpentine flow channel in a PEM (proton exchange membrane) fuel cell. Energy, 2016, 101: 252 doi: 10.1016/j.energy.2016.02.026
    [25] Cahalan T, Rehfeldt S, Bauer M, et al. Experimental set-up for analysis of membranes used in external membrane humidification of PEM fuel cells. Int J Hydrog Energy, 2016, 41(31): 13666 doi: 10.1016/j.ijhydene.2016.05.281
    [26] Hwang J J, Chang W R, Kao J K, et al. Experimental study on performance of a planar membrane humidifier for a proton exchange membrane fuel cell stack. J Power Sources, 2012, 215: 69 doi: 10.1016/j.jpowsour.2012.04.051
    [27] Chen C Y, Su J H, Ali H M, et al. Effect of channel structure on the performance of a planar membrane humidifier for proton exchange membrane fuel cell. Int J Heat Mass Transf, 2020, 163: 120522 doi: 10.1016/j.ijheatmasstransfer.2020.120522
    [28] Bao C, Bessler W G. Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part I. Model development. J Power Sources, 2015, 275: 922
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  132
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-30
  • 网络出版日期:  2021-08-18

目录

    /

    返回文章
    返回