• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阴离子F掺杂SOFCs阴极La1−xSrxCo1−yFeyO3−δ的氧还原性能

董雨龙 李宗宝 王傲 花仕洋

董雨龙, 李宗宝, 王傲, 花仕洋. 阴离子F掺杂SOFCs阴极La1−xSrxCo1−yFeyO3−δ的氧还原性能[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.05.21.005
引用本文: 董雨龙, 李宗宝, 王傲, 花仕洋. 阴离子F掺杂SOFCs阴极La1−xSrxCo1−yFeyO3−δ的氧还原性能[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.05.21.005
DONG Yu-long, LI Zong-bao, WANG Ao, HUA Shi-yang. Oxygen reduction performance of F-doped La1−xSrxCo1−yFeyO3−δ solid oxide fuel cells cathode[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.05.21.005
Citation: DONG Yu-long, LI Zong-bao, WANG Ao, HUA Shi-yang. Oxygen reduction performance of F-doped La1−xSrxCo1−yFeyO3−δ solid oxide fuel cells cathode[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.05.21.005

阴离子F掺杂SOFCs阴极La1−xSrxCo1−yFeyO3−δ的氧还原性能

doi: 10.13374/j.issn2095-9389.2021.05.21.005
基金项目: 国家自然科学基金资助项目(52072134);贵州省教育厅科技拔尖资助项目(黔教合KY字[2019]060);铜仁市科技计划资助项目(铜市科研〔2020〕123);铜仁学院博士启动基金资助项目(trxyDH1905)
详细信息
    通讯作者:

    E-mail: huasy576@163.com

  • 中图分类号: TK91

Oxygen reduction performance of F-doped La1−xSrxCo1−yFeyO3−δ solid oxide fuel cells cathode

More Information
  • 摘要: 固体氧化物燃料电池(SOFC)因其高效、清洁及便携性等优点被认为是当前最具应用前景的新能源技术之一。传统SOFC较高的工作温度(>800 ℃)限制了其商业推广,降低其工作温度成为当前研究的热点。钙钛矿阴极材料La1−xSrxCo1−yFeyO3−δ(LSCF)因具有较高的电子离子混合导电性而成为中温SOFC阴极材料的较佳选择,同时实验证明F替代O位能有效提升SOFC稳定性。基于已有实验报道,本文采用第一性原理计算了F掺杂对LSCF电子结构影响、氧气分子在(100)表面吸附能的变化、阴极体内氧空位形成能及氧离子迁移活化能的影响。通过与未掺杂材料性能的比较,证明:适量F掺杂LSCF在有效提升阴极表面对氧气分子吸附能力同时能进一步提高体内氧离子迁移效率,从而提升阴极氧化还原反应能力。

     

  • 图  1  F在钙钛矿体内(a)及(100)表面(b)掺杂后的晶胞结构.

    Figure  1.  Structures of bulk (a) and (100) surface (b) of the F-doped La0.75Sr0.25Co0.25Fe0.75O3

    图  2  F掺杂前(a)、后(b)钙钛矿LSCF (100)表面层的电子局域函数;(c)掺杂前O-2p及掺杂后F-2p态分波态密度

    Figure  2.  Electron localization function of (100) surfaces (a–b) and particle density of states of O-2p in the LSCF and doped F-2p state (c)

    图  3  氧气分子吸附在LSCF(a)和LSCFF(b)表面Fe原子位的最优化结构

    Figure  3.  Optimized structures of the O2 absorbed on the Fe atoms in the LSCF (a) and LSCFF (b)

    图  4  (a)氧气吸附在LSCFF(上)及LSCF(下)表面后主要表面原子的分波态密度;(b(O2吸附LSCFF体系表面电子局域函数

    Figure  4.  (a) Partial density of states of atoms on the (100) surfaces of the LSCFF (up) and LSCF (down) after oxygen absorption; (b) electron localization function of the LSCFF after oxygen absorption.

    图  5  LSCFF体系中F近邻氧空位(vac1 和vac2)(a)和氧离子在空位间迁移示意图(b);氧离子在LSCF(c)和LSCFF(d)体系中迁移的活化能

    Figure  5.  Schematic illustration of the oxygen vacancies (vac1 and vac2) near the F atom (a) in the LSCFF and the related migration path (b); calculated activation energies for oxygen ion migration in the LSCF (c) and LSCFF (d)

    表  1  F掺杂前后LSCF钙钛矿氧吸附性能及氧空位形成能

    Table  1.   Absorption energies of oxygen and formation energies of the oxygen cavity in the LSCF before and after F doping

    StructureEads/eVdFe-O1/nmdO1-O2/nmEvac1/eVEvac2/eV
    LSCFOn Fe−0.5570.1990.126(3)2.2622.327
    On Co−0.3020.2040.126(2)
    LSCFFOn Fe−0.5590.1950.12682.4722.468
    On Co−0.3260.2040.1262
    下载: 导出CSV
  • [1] Jiang S P. Advances and challenges of intermediate temperature solid oxide fuel cells: A concise review. J Electrochem, 2012, 18(6): 479
    [2] Liu Y F, Zhang X L, Li C J. Advances in carbon-based anode materials for microbial fuel cells. Chin J Eng, 2020, 42(3): 270

    刘远峰, 张秀玲, 李从举. 微生物燃料电池碳基阳极材料的研究进展. 工程科学学报, 2020, 42(3):270
    [3] Liu S M, Deng Z F, Xu G Z, et al. Commercialization and future development of the solid oxide fuel cell (SOFC) in Europe. Chin J Eng, 2020, 42(3): 278

    刘少名, 邓占锋, 徐桂芝, 等. 欧洲固体氧化物燃料电池(SOFC)产业化现状. 工程科学学报, 2020, 42(3):278
    [4] Jiang Z Y, Xia C R, Chen F L. Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an infiltration/impregnation technique. Electrochimica Acta, 2010, 55(11): 3595 doi: 10.1016/j.electacta.2010.02.019
    [5] Zhang Y, Knibbe R, Sunarso J, et al. Recent progress on advanced materials for solid-oxide fuel cells operating below 500 ℃. Adv Mater, 2017, 29(48): 1700132 doi: 10.1002/adma.201700132
    [6] Zhang Y X, Ma J B, Li M, et al. Plasma glow discharge as a tool for surface modification of catalytic solid oxides: A case study of La0.6Sr0.4Co0.2Fe0.8O3–δ perovskite. Energies, 2016, 9(10): 786 doi: 10.3390/en9100786
    [7] Liang F L, Chen J, Jiang S P, et al. High performance solid oxide fuel cells with electrocatalytically enhanced (La, Sr)MnO3 cathodes. Electrochem Commun, 2009, 11(5): 1048 doi: 10.1016/j.elecom.2009.03.009
    [8] Shao Z P, Haile S M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature, 2004, 431(7005): 170 doi: 10.1038/nature02863
    [9] Jia L C, Li K, Yan D, et al. Oxygen adsorption properties on a palladium promoted La1–xSrxMnO3 solid oxide fuel cell cathode. RSC Adv, 2015, 5(10): 7761 doi: 10.1039/C4RA08705D
    [10] Kwon H, Park J, Kim B K, et al. Effect of B-cation doping on oxygen vacancy formation and migration in LaBO3: A density functional theory study. J Korean Ceram Soc, 2015, 52(5): 331 doi: 10.4191/kcers.2015.52.5.331
    [11] Zhang M, Yang M, Hou Z F, et al. A bi-layered composite cathode of La0Sr0.2MnO3-YSZ and La0.8Sr0.2MnO3‒La0.4Ce0.6O1.8 for IT-SOFCs. Electrochimica Acta, 2008, 53(15): 4998 doi: 10.1016/j.electacta.2008.01.095
    [12] Ji Y, Kilner J A, Carolan M F. Electrical properties and oxygen diffusion in yttria-stabilised zirconia (YSZ)-La0.8Sr0.2MnOδ (LSM) composites. Solid State Ion, 2005, 176(9-10): 937 doi: 10.1016/j.ssi.2004.11.019
    [13] Zhao H, Huo L H, Gao S. Electrochemical properties of LSM-CBO composite cathode. J Power Sources, 2004, 125(2): 149 doi: 10.1016/j.jpowsour.2003.07.009
    [14] Qiu P, Wang A, Li J, et al. Promoted CO2-poisoning resistance of La0.8Sr0.2MnO3−δ-coated Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode for intermediate temperature solid oxide fuel cells. J Power Sources, 2016, 327: 408
    [15] Vohs J M, Gorte R J. High-performance SOFC cathodes prepared by infiltration. Adv Mater, 2009, 21(9): 943 doi: 10.1002/adma.200802428
    [16] Cui X Y, Ringer S P. On the nexus between atom probe microscopy and density functional theory simulations. Mater Charact, 2018, 146: 347 doi: 10.1016/j.matchar.2018.05.015
    [17] Yasuda I, Hishinuma M. Electrical conductivity and chemical diffusion coefficient of strontium-doped lanthanum manganites. J Solid State Chem, 1996, 123(2): 382 doi: 10.1006/jssc.1996.0193
    [18] Zhang Z B, Zhu Y L, Zhong Y J, et al. Anion doping: A new strategy for developing high-performance perovskite-type cathode materials of solid oxide fuel cells. Adv Energy Mater, 2017, 7(17): 1700242 doi: 10.1002/aenm.201700242
    [19] Xie Y, Shi N, Huan D M, et al. A stable and efficient cathode for fluorine-containing proton-conducting solid oxide fuel cells. ChemSusChem, 2018, 11(19): 3423 doi: 10.1002/cssc.201801193
    [20] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B Condens Matter, 1996, 54(16): 11169 doi: 10.1103/PhysRevB.54.11169
    [21] Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B Condens Matter, 1994, 49(20): 14251 doi: 10.1103/PhysRevB.49.14251
    [22] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77(18): 3865 doi: 10.1103/PhysRevLett.77.3865
    [23] Wang Y, Cheng H P. Oxygen reduction activity on perovskite oxide surfaces: A comparative first-principles study of LaMnO3, LaFeO3, and LaCrO3. J Phys Chem C, 2013, 117(5): 2106 doi: 10.1021/jp309203k
    [24] Ritzmann A M, Dieterich J M, Carter E A. Density functional theory + U analysis of the electronic structure and defect chemistry of LSCF (La05Sr0.5Co0.25Fe0.75O3–δ). Phys Chem Chem Phys, 2016, 18(17): 12260 doi: 10.1039/C6CP01720G
    [25] Cao Y P, Gadre M J, Ngo A T, et al. Factors controlling surface oxygen exchange in oxides. Nat Commun, 2019, 10(1): 1346 doi: 10.1038/s41467-019-08674-4
    [26] Kotomin E A, Evarestov R A, Mastrikov Y A, et al. DFT plane wave calculations of the atomic and electronic structure of LaMnO3(001) surface. Phys Chem Chem Phys, 2005, 7(11): 2346 doi: 10.1039/b503272e
    [27] Kobko N, Dannenberg J J. Effect of basis set superposition error (BSSE) upon ab initio calculations of organic transition states. J Phys Chem A, 2001, 105(10): 1944 doi: 10.1021/jp001970b
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  101
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-21
  • 网络出版日期:  2021-07-18

目录

    /

    返回文章
    返回