• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁搅拌对特大方坯结晶器内流场及温度场影响

赵立华 苑一波 邢立东 包燕平

赵立华, 苑一波, 邢立东, 包燕平. 电磁搅拌对特大方坯结晶器内流场及温度场影响[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.06.25.001
引用本文: 赵立华, 苑一波, 邢立东, 包燕平. 电磁搅拌对特大方坯结晶器内流场及温度场影响[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.06.25.001
ZHAO Li-hua, YUAN Yi-bo, XING Li-dong, BAO Yan-ping. Effect of electromagnetic stirring in extra-large billet on the flow field and temperature field[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.06.25.001
Citation: ZHAO Li-hua, YUAN Yi-bo, XING Li-dong, BAO Yan-ping. Effect of electromagnetic stirring in extra-large billet on the flow field and temperature field[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.06.25.001

电磁搅拌对特大方坯结晶器内流场及温度场影响

doi: 10.13374/j.issn2095-9389.2021.06.25.001
基金项目: 钢铁冶金新技术国家重点实验室基金资助项目(41619018)
详细信息
    通讯作者:

    E-mail: yuanyibo0705@163.com

  • 中图分类号: TF777.2

Effect of electromagnetic stirring in extra-large billet on the flow field and temperature field

More Information
  • 摘要: 以某厂断面为410 mm × 530 mm的特大方坯结晶器为原型,利用ANSYS有限元软件建立三维数值模型,研究电磁搅拌对结晶器流场及温度场的影响。施加电磁搅拌后,钢液受到径向电磁力,液面呈现旋转流动趋势。结晶器内钢液最大切向速度随着电流的增加而增大,随着频率的增加而减小。电磁搅拌的电流大小由0 增加到500 A时,液面波动由1.21 mm增加到4.35 mm。电磁搅拌能够使钢水的高温区局限于连铸结晶器上部,钢水温度更加均匀。同时钢液的水平旋流能够抑制初生坯壳的生长,降低坯壳的生长速度,使结晶器出口处坯壳厚度变薄。综合分析,该厂在实际生产时合理的电磁搅拌的电流大小应为400 A,频率为1.5 Hz,此时钢渣液面波动约为2.73 mm,温度场较为均匀。

     

  • 图  1  结晶器(a)和水口(b)的网格划分示意图

    Figure  1.  Meshed computational model equipped with (a) a mold chamfer and (b) a four-port submerged entry nozzle (SEN)

    图  2  电磁搅拌装置图(a)和安装示意图(b)

    Figure  2.  (a) Schematic illustration of the mold electromagnetic stirring(M-EMS) and (b) its install location

    图  3  结晶器中心轴向线电磁搅拌强度测量值和计算值对比

    Figure  3.  Comparison of the calculated and measured magnetic flux density in M-EMS

    图  4  无电磁搅拌(a)和施加电磁搅拌(b)情况下结晶器流场速度分布图和流线图

    Figure  4.  Velocity contour in the upper part of the mold (a) without EMS and (b) with EMS

    图  5  电流强度对电磁搅拌中心速度的影响.(a)0 A;(b)300 A;(c)400 A;(d)500 A)

    Figure  5.  Effect of the current intensity on the velocity distribution of the stirring center: (a) 0 A; (b) 300 A; (c) 400 A; (d) 500 A

    图  6  不同电流强度下电磁搅拌中心切向速度大小

    Figure  6.  Tangential velocity of the electromagnetic stirring center under different current intensities

    图  7  钢渣界面速度大小分布云图.(a)无电磁搅拌;(b)施加电磁搅拌

    Figure  7.  Velocity distribution of the steel-slag interface (a) without EMS and (b) with EMS

    图  8  不同电流强度下钢渣液面高度的分布.(a)0 A;(b)300 A;(c)400 A;(d)500 A)

    Figure  8.  Distribution of the liquid level of the steel-slag surface at different current intensities:(a)0 A;(b)300 A;(c)400 A;(d)500 A

    图  9  电磁搅拌中轴线最大磁感应强度测量值

    Figure  9.  Actual measurement of the magnetic induction at the axis of electromagnetic stirring

    图  10  频率对电磁搅拌中心切向速度的影响

    Figure  10.  Effect of the current frequency on the tangential velocity of the stirring center

    图  11  水口冲击方向截面的温度分布和结晶器出口截面的液相分数分布.(a)0 A;(b)300 A;(c)400 A;(d)500 A)

    Figure  11.  Distribution of temperature in the impinging direction of the nozzle and the liquid fraction at the outlet of the mold: (a) 0 A ; (b) 300 A; (c) 400 A; (d) 500 A

    图  12  坯壳厚度沿铸造方向的增长情况

    Figure  12.  Growth of the solidified shell thickness along the casting direction

    表  1  模拟计算条件

    Table  1.   Simulation conditions

    ParametersValue
    Cross section of bloom/(mm×mm)410×530
    Submerged entry nozzleFour-port
    Casting speed/(m·min−10.43
    Casting temperature /K1790
    Density of steel /(kg·m−36970
    Density of slag /(kg·m−32500
    Viscosity of steel /(kg·m−1·s−10.00623
    Liquidus temperature /K1765
    Solidus temperature /K1698
    Steel resistivity /(Ω·m)1.4×10−6
    Copper plate resistivity /(Ω·m)1.7×10−8
    Running current of M-EMS /A200–600
    Running frequency of M-EMS /Hz1.5–3.5
    Permeability of iron core
    Permeability of steel
    1000
    1
    下载: 导出CSV
  • [1] Cai K K. Continuous Casting Mold. Beijing: Metallurgical Industry Press, 2008

    蔡开科. 连铸结晶器. 北京: 冶金工业出版社, 2008
    [2] Spitzer K H, Dubke M, Schwerdtfeger K. Rotational electromagnetic stirring in continuous casting of round strands. Metall Trans B, 1986, 17(1): 119 doi: 10.1007/BF02670825
    [3] Wu H J, Wei N, Bao Y P, et al. Effect of M-EMS on the solidification structure of a steel billet. Int J Miner Metall Mater, 2011, 18(2): 159 doi: 10.1007/s12613-011-0416-y
    [4] Ren B Z, Chen D F, Wang H D, et al. Numerical simulation of fluid flow and solidification in bloom continuous casting mould with electromagnetic stirring. Ironmak Steelmak, 2015, 42(6): 401 doi: 10.1179/1743281214Y.0000000240
    [5] Wen Y M, Han Y S, Liu Q, et al. Optimization of multi-fields coupled molten steel behavior in bloom continuous casting. Iron Steel, 2018, 53(6): 53

    文艳梅, 韩延申, 刘青, 等. 大方坯结晶器内的多物理场模拟优化. 钢铁, 2018, 53(6):53
    [6] Yu Y, Li B K, Yang G. Numerical modeling of flow fields in the continuous casting process of steel under electromagnetic stirring. J Univ Sci Technol Beijing, 2011, 33(2): 157

    于洋, 李宝宽, 杨刚. 钢连铸电磁搅拌工艺中流场的数值模拟. 北京科技大学学报, 2011, 33(2):157
    [7] Maurya A, Jha P K. Influence of electromagnetic stirrer position on fluid flow and solidification in continuous casting mold. Appl Math Model, 2017, 48: 736 doi: 10.1016/j.apm.2017.02.029
    [8] Wang W W, Zhang J Q, Chen S Q, et al. Effect of nozzle outlet angle on the fluid flow and level fluctuation in a bloom casting mould. J Univ Sci Technol Beijing, 2007, 29(8): 816 doi: 10.3321/j.issn:1001-053x.2007.08.015

    王维维, 张家泉, 陈素琼, 等. 水口侧孔倾角对大方坯结晶器流场和液面波动的影响. 北京科技大学学报, 2007, 29(8):816 doi: 10.3321/j.issn:1001-053x.2007.08.015
    [9] Fang Q, Ni H W, Wang B, et al. Effects of EMS induced flow on solidification and solute transport in bloom mold. Metals, 2017, 7(3): 72 doi: 10.3390/met7030072
    [10] Fang Q, Ni H W, Zhang H, et al. The effects of a submerged entry nozzle on flow and initial solidification in a continuous casting bloom mold with electromagnetic stirring. Metals, 2017, 7(4): 146 doi: 10.3390/met7040146
    [11] He M L, Wang N, Chen M, et al. Physical and numerical simulation of the fluid flow and temperature distribution in bloom continuous casting mold. Steel Res Int, 2017, 88(9): 1600447 doi: 10.1002/srin.201600447
    [12] Aboutalebi M M, Labrecque C, D'Amours J, et al. Angular Re-positioning of a five ported SEN versus EMS braking to stabilize flows at the upper slag-liquid steel interface. Steel Res Int, 2019, 90(3): 1800429 doi: 10.1002/srin.201800429
    [13] Wang Y T, Yang Z G, Zhang X F, et al. Effects of electromagnetic stirring on the flow field and level fluctuation in bloom molds. J Univ Sci Technol Beijing, 2014, 36(10): 1354

    王亚涛, 杨振国, 张晓峰, 等. 电磁搅拌对大方坯结晶器流场和液面波动的影响. 北京科技大学学报, 2014, 36(10):1354
    [14] Li F S, Chen W Q. Numerical simulation of flow field and temperature distribution in continuously cast rectangular billet mold. Shanghai Met, 2016, 38(3): 73 doi: 10.3969/j.issn.1001-7208.2016.03.015

    李凤善, 陈伟庆. 矩形坯连铸结晶器流场和温度场的数值模拟. 上海金属, 2016, 38(3):73 doi: 10.3969/j.issn.1001-7208.2016.03.015
    [15] Li S X, Lan P, Tang H Y, et al. Study on the electromagnetic field, fluid flow, and solidification in a bloom continuous casting mold by numerical simulation. Steel Res Int, 2018, 89(12): 1800071 doi: 10.1002/srin.201800071
    [16] LÜ M, Mi X Y, Zhang C H, et al. Effect of continuous-casting parameters on carbon segregation in SWRH82B high-carbon steel. Chin J Eng. 2020, 42(Suppl 1): 102

    吕明, 米小雨, 张朝晖, 等. 连铸工艺参数对SWRH82B高碳钢碳偏析的影响. 工程科学学报. 2020, 42(增刊): 102
    [17] Wei N, Bao Y P, Wu H J, et al. Numerical simulation of 3-D electromagnetic field in a bloom continuous casting mold with electromagnetic stirring. J Univ Sci Technol Beijing, 2011, 33(6): 702

    魏宁, 包燕平, 吴华杰, 等. 大方坯连铸结晶器电磁搅拌三维电磁场的数值模拟. 北京科技大学学报, 2011, 33(6):702
    [18] Maurya A, Jha P K. Two-phase analysis of interface level fluctuation in continuous casting mold with electromagnetic stirring. Int J Numer Methods Heat Fluid Flow, 2018, 28(9): 2036 doi: 10.1108/HFF-08-2017-0310
    [19] Zhang J, Yang L, Han Z F, et al. Level fluctuation in continuous casting mold with electromagnetic stirring. J Iron Steel Res, 2016, 28(8): 17

    张静, 杨龙, 韩泽峰, 等. 电磁搅拌作用下连铸结晶器内液面波动行为. 钢铁研究学报, 2016, 28(8):17
    [20] Li S X, Zhang X M, Li L, et al. Representation and effect of mushy zone coefficient on coupled flow and solidification simulation during continuous casting. Chin J Eng. 2019, 41(2): 199

    李少翔, 张晓萌, 李亮, 等. 连铸流动与凝固耦合模拟中糊状区系数的表征及影响. 工程科学学报. 2019, 41(2): 199
    [21] Hu Q, Zhang S, Wang P, et al. Liquid level fluctuation and slag entrainment behavior in a bloom mold. China Metall, 2020, 30(6): 63

    胡群, 张硕, 王璞, 等. 大方坯结晶器内液面波动与卷渣行为. 中国冶金, 2020, 30(6):63
    [22] An H H, Bao Y P, Wang M, et al. Optimization of in-mold electromagnetic stirring in continuously cast steel billet and bloom by electromagnetic torque detecting. // 2018 National Steelmaking Conference. Chengdu, 2018: 1

    安航航, 包燕平, 王敏, 等. 基于电磁力矩检测的方坯连铸结晶器电磁搅拌工艺参数优化//2018年(第二十届)全国炼钢学术会议. 成都, 2018: 1
    [23] Mao B. Theory and Technology of Electromagnetic Stirring for Continuous Casting. Beijing: Metallurgical Industry Press, 2012

    毛斌. 连续铸钢用电磁搅拌的理论与技术. 北京: 冶金工业出版社, 2012
    [24] Zhang J, Wang E G, Deng A Y, et al. Numerical simulation of flow field in bloom continuous casting mold with electromagnetic stirring. Adv Mater Res, 2010, 146-147: 272 doi: 10.4028/www.scientific.net/AMR.146-147.272
    [25] Ren B Z, Chen D F, Wang H D, et al. Numerical simulation of fluid flow and solidification in bloom continuous casting mould with electromagnetic stirring. Ironmak Steelmak, 2015, 42(6): 401 doi: 10.1179/1743281214Y.0000000240
    [26] Zhang W J, Luo S, Chen Y, et al. Numerical simulation of fluid flow, heat transfer, species transfer, and solidification in billet continuous casting mold with M-EMS. Metals, 2019, 9(1): 66 doi: 10.3390/met9010066
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  90
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-25
  • 网络出版日期:  2021-08-30

目录

    /

    返回文章
    返回