• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模拟冻结法施工环境对大体积混凝土的性能影响

吴瑞东 刘娟红 纪洪广 车树武 周昱程 张广田

吴瑞东, 刘娟红, 纪洪广, 车树武, 周昱程, 张广田. 模拟冻结法施工环境对大体积混凝土的性能影响[J]. 工程科学学报, 2022, 44(5): 857-864. doi: 10.13374/j.issn2095-9389.2021.07.01.002
引用本文: 吴瑞东, 刘娟红, 纪洪广, 车树武, 周昱程, 张广田. 模拟冻结法施工环境对大体积混凝土的性能影响[J]. 工程科学学报, 2022, 44(5): 857-864. doi: 10.13374/j.issn2095-9389.2021.07.01.002
WU Rui-dong, LIU Juan-hong, JI Hong-guang, CHE Shu-wu, ZHOU Yu-cheng, ZHANG Guang-tian. Effects of a simulated freezing construction environment on the mass concrete performance[J]. Chinese Journal of Engineering, 2022, 44(5): 857-864. doi: 10.13374/j.issn2095-9389.2021.07.01.002
Citation: WU Rui-dong, LIU Juan-hong, JI Hong-guang, CHE Shu-wu, ZHOU Yu-cheng, ZHANG Guang-tian. Effects of a simulated freezing construction environment on the mass concrete performance[J]. Chinese Journal of Engineering, 2022, 44(5): 857-864. doi: 10.13374/j.issn2095-9389.2021.07.01.002

模拟冻结法施工环境对大体积混凝土的性能影响

doi: 10.13374/j.issn2095-9389.2021.07.01.002
基金项目: 国家重点研发计划资助项目(2016YFC0600803);国家自然科学基金资助项目(51834001);中央高校基本科研业务费资助项目(FRF-BD-20-01B)
详细信息
    通讯作者:

    E-mail: juanhong1966@hotmail.com

  • 中图分类号: TU528

Effects of a simulated freezing construction environment on the mass concrete performance

More Information
  • 摘要: 模拟大体积混凝土在冻结法施工环境的状态,将混凝土浇筑7 h后施加−5/60 ℃和−5/70 ℃温差,测试施加模拟环境后混凝土的超声波参数、抗压强度、劈裂抗拉强度、氯离子扩散系数和冲击倾向性,分析混凝土的扫描电镜微观形貌。结果表明,冻结施工环境对于混凝土内部会造成一定的损伤,且平行于加温方向的损伤要大于垂直方向,C50混凝土的损伤大于C70混凝土,温度梯度会加剧混凝土内部的损伤。模拟冻结环境会对混凝土抗压强度、劈裂抗拉强度、氯离子渗透性能和冲击倾向性造成不利影响,温差与性能降低率正相关,且这种影响对于低强度混凝土更加显著。模拟冻结环境造成混凝土试块的内部微观结构不均匀,低温端混凝土结构比较疏松,高温端结构比较致密,导致部分混凝土性能的降低。

     

  • 图  1  试验仪器。(a)主控机箱;(b)循环管线和加温模具

    Figure  1.  Experiment instrument: (a) main control cabinet; (b) circulation pipeline and heating mold

    图  2  超声检测方向示意图

    Figure  2.  Schematic diagram of the ultrasonic testing direction

    图  3  混凝土的抗压强度和劈裂抗拉强度。(a)抗压强度;(b)劈裂抗拉强度

    Figure  3.  Compressive strength and splitting tensile strength of concrete: (a) compressive strength; (b) splitting tensile strength

    图  4  混凝土的氯离子扩散系数。(a)C50;(b)C70

    Figure  4.  Chloride diffusion coefficient of concrete: (a) C50; (b) C70

    图  5  C50混凝土的扫描电镜图片。(a)冷端;(b) 热端;(c)中温;(d)标准养护

    Figure  5.  SEM images of C50 concrete: (a) cold side; (b) hot side; (c) medium temperature; (d) standard curing

    图  6  C70混凝土的扫描电镜图片。(a)冷端;(b)热端;(c)中温;(d)标准养护

    Figure  6.  SEM image of C70 concrete: (a) cold side; (b) hot side; (c) medium temperature; (d) standard curing

    表  1  P.O 42.5水泥性能指标

    Table  1.   Main properties of cement

    Water mass requirement for normal
    consistency/%
    Initial setting
    time/min
    Final setting
    time/min
    Specific surface
    area/(m2·kg−1)
    SoundnessFlexural strength/MPa Compressive strength/MPa
    3 d28 d 3 d28 d
    29.2162226392Qualified4.99.9 27.550.0
    下载: 导出CSV

    表  2  不同强度等级的混凝土配合比

    Table  2.   Mix proportions of concrete with different strengths kg·m−3

    Strength gradeCementFly ashSlag powderSilica fumeSandStoneWaterPC*
    C503208085067310771555.82
    C703371001082555511261409.69
    Note:* is polycarboxylate superplasticizer for concrete.
    下载: 导出CSV

    表  3  混凝土在不同条件下的超声检测结果

    Table  3.   Ultrasonic testing results of concrete under different conditions

    Strength gradeSimulation condition/℃DirectionAmplitude/dbVelocity/
    (km·s−1)
    C50−5/60Vertical101.85.68
    −5/60Parallel99.85.42
    Standard curing103.65.85
    −5/70Vertical102.15.66
    −5/70Parallel100.05.33
    Standard curing104.25.94
    C70−5/60Vertical103.16.03
    −5/60Parallel101.65.89
    Standard curing104.86.14
    −5/70Vertical103.36.08
    −5/70Parallel100.25.85
    Standard curing105.36.21
    下载: 导出CSV

    表  4  混凝土在不同温差模拟条件下的超声检测分析结果

    Table  4.   Analysis results of ultrasonic testing of concrete under different simulation conditions

    Strength gradeTemperature difference/℃Relative variation ratio/%
    Vertical velocityParallel velocityVertical amplitudeParallel amplitude
    C50−5/602.97.41.73.7
    C50−5/704.710.32.04.2
    C70−5/601.84.11.63.1
    C70−5/702.15.81.94.8
    下载: 导出CSV

    表  5  混凝土的冲击倾向性指标

    Table  5.   Bursting liability indexes of concrete

    GroupBrittlenessDynamic failure time,
    TD/ ms
    Impact energy
    index, KE
    C50 Standard19.64801.78
    C50 −5/60 ℃20.24102.06
    C50 −5/70 ℃21.23802.32
    C70 Standard21.91705.81
    C70 −5/60 ℃22.81406.32
    C70 −5/70 ℃23.51206.55
    下载: 导出CSV
  • [1] Cai M F, Xue D L, Ren F H. Current status and development strategy of metal mines. Chin J Eng, 2019, 41(4): 417

    蔡美峰, 薛鼎龙, 任奋华. 金属矿深部开采现状与发展战略. 工程科学学报, 2019, 41(4):417
    [2] Liu L Y, Ji H G, Wang T, et al. Mechanism of country rock damage and failure in deep shaft excavation under high pore pressure and asymmetric geostress. Chin J Eng, 2020, 42(6): 715

    刘力源, 纪洪广, 王涛, 等. 高渗透压和不对称围压作用下深竖井围岩损伤破裂机理. 工程科学学报, 2020, 42(6):715
    [3] Dong J H, Wu X L, Shi L J, et al. Effect of shallow tunnel construction by horizontal freezing on adjacent orthogonal subgrades. Chin J Rock Mech Eng, 2020, 39(11): 2365

    董建华, 吴晓磊, 师利君, 等. 水平冻结施工浅埋隧道对邻近正交路基的作用分析. 岩石力学与工程学报, 2020, 39(11):2365
    [4] Zhang J W, Liu S J, Zhang S. Ultrasonic time-frequency characteristics of water-rich fine sand during unidirectional freezing process. Chin J Rock Mech Eng, 2020, 39(5): 1061

    张基伟, 刘书杰, 张松. 富水细砂单向冻结超声波时频特性研究. 岩石力学与工程学报, 2020, 39(5):1061
    [5] Gao X J, Li M Y, Zhang J W, et al. Field research on artificial freezing of subway cross passages in water-rich silty clay layers. Chin J Rock Mech Eng, 2021, 40(6): 1267

    郜新军, 李铭远, 张景伟, 等. 富水粉质黏土中地铁联络通道冻结法试验研究. 岩石力学与工程学报, 2021, 40(6):1267
    [6] Ma H Y, Zhu C Q, Zhao P T, et al. Freezing method for rock cross-cut coal uncovering: Aging characteristic of effective freezing distance on injecting liquid nitrogen into coal seam. Adv Civ Eng, 2021: 8870768
    [7] Zhang S, Yue Z R, Sun T C, et al. Evolution of ground freezing temperature field under sudden seepage with stable flow rate and discriminate method of seepage. J China Coal Soc, 2020, 45(12): 4017

    张松, 岳祖润, 孙铁成, 等. 突发定渗流作用下冻土温度场演化规律及判别方法. 煤炭学报, 2020, 45(12):4017
    [8] Inada Y, Yokota K. Some studies of low temperature rock strength. Int J Rock Mech Min Sci Geomech Abstr, 1984, 21(3): 145 doi: 10.1016/0148-9062(84)91532-8
    [9] Shan R L, Liu W J, Chai G J, et al. Experimental study on the expansion law of local horizontal frozen body under seepage. J China Coal Soc, 2019, 44(Suppl 2): 526

    单仁亮, 刘伟俊, 柴高竣, 等. 渗流作用下局部水平冻结体扩展规律试验研究. 煤炭学报, 2019, 44(增刊2): 526
    [10] Song Y J, Zhang L T, Ren J X, et al. Creep property and model of red sandstone under low temperature environment. J China Coal Soc, 2020, 45(8): 2795

    宋勇军, 张磊涛, 任建喜, 等. 低温环境下红砂岩蠕变特性及其模型. 煤炭学报, 2020, 45(8):2795
    [11] Yao Z S, Zhao L X, Cheng H, et al. Optimization design and measurement analysis on inter lining of high strength reinforced concrete frozen shaft lining with deep topsoil. J China Coal Soc, 2019, 44(7): 2125

    姚直书, 赵丽霞, 程桦, 等. 深厚表土层冻结井筒高强钢筋混凝土内壁设计优化与实测分析. 煤炭学报, 2019, 44(7):2125
    [12] Jiao H Z, Sun G D, Chen X M, et al. Development of temperature field of multi circle freezing wall in deep alluvium. J China Coal Soc, 2018, 43(Suppl 2): 443

    焦华喆, 孙冠东, 陈新明, 等. 深厚冲积层多圈孔冻结壁温度场发展研究. 煤炭学报, 2018, 43(增刊2): 443
    [13] Guan H D, Zhou X M, Xu Y, et al. Calculation of the early thermal stress in freezing vertical shaft lining. Met Mine, 2018(5): 44

    管华栋, 周晓敏, 徐衍, 等. 冻结立井井壁早期温度应力计算研究. 金属矿山, 2018(5):44
    [14] Zhou Y Q, Liu W W. Application of granulated copper slag in massive concrete under saline soil environment. Constr Build Mater, 2021, 266: 121165 doi: 10.1016/j.conbuildmat.2020.121165
    [15] Azenha M, Kanavaris F, Schlicke D, et al. Recommendations of RILEM TC 287-CCS: Thermo-chemo-mechanical modelling of massive concrete structures towards cracking risk assessment. Mater Struct, 2021, 54(4): 1
    [16] Feng C Q, Zhao C, Yu X M, et al. A mathematical model of the expansion evolution of magnesium oxide in mass concrete based on hydration characteristics. Materials, 2021, 14(12): 3162 doi: 10.3390/ma14123162
    [17] Bakour A, Ftima M B. Experimental investigations on the asymptotic fracture energy for large mass concrete specimens using wedge splitting test. Constr Build Mater, 2021, 279: 122405 doi: 10.1016/j.conbuildmat.2021.122405
    [18] Zhou Y C, Liu J H, Huang S, et al. Performance change of shaft lining concrete under simulated coastal ultra-deep mine environments. Constr Build Mater, 2020, 230: 116909 doi: 10.1016/j.conbuildmat.2019.116909
    [19] Liu J H, Zhao L, Ji H G. Influence of initial damage on degradation and deterioration of concrete under sulfate attack. Chin J Eng, 2017, 39(8): 1278

    刘娟红, 赵力, 纪洪广. 初始损伤对混凝土硫酸盐腐蚀劣化性能的影响. 工程科学学报, 2017, 39(8):1278
    [20] Yang L, Yao Z S, Xue W P, et al. Preparation, performance test and microanalysis of hybrid fibers and microexpansive high-performance shaft lining concrete. Constr Build Mater, 2019, 223: 431 doi: 10.1016/j.conbuildmat.2019.06.230
    [21] Liu J H, Zhao L, Song S M, et al. Ultrasonic velocity and acoustic emission properties of concrete eroded by sulfate and its damage mechanism. Chin J Eng, 2016, 38(8): 1075

    刘娟红, 赵力, 宋少民, 等. 混凝土硫酸盐腐蚀损伤的声波与声发射变化特征及机理. 工程科学学报, 2016, 38(8):1075
    [22] Liu J H, Wang Z Q, Ji H G. Performance of shaft lining concrete under the coupling effect of early-age frozen soil pressure and negative temperature. J Univ Sci Technol Beijing, 2014, 36(8): 1000

    刘娟红, 王祖琦, 纪洪广. 早龄期冻结土压力与负温耦合作用的井壁混凝土性能. 北京科技大学学报, 2014, 36(8):1000
    [23] Zhou Y C, Liu J H, Yang H T, et al. Failure patterns and energy analysis of shaft lining concrete in simulated deep underground environments. J Wuhan Univ Technol Mater Sci Ed, 2020, 35(2): 418 doi: 10.1007/s11595-020-2273-x
    [24] Liu J H, Zhou Y C, Yang H T, et al. Energy and damage characteristics of shaft lining concrete subjected to impact. J China Coal Soc, 2019, 44(10): 2983

    刘娟红, 周昱程, 杨海涛, 等. 冲击荷载作用下的井壁混凝土能量与损伤特性. 煤炭学报, 2019, 44(10):2983
    [25] Liu J H, Zhou Y C, Ji H G. Energy evolution mechanism of shaft wall concrete under uniaxial loading and unloading compression. J China Coal Soc, 2018, 43(12): 3364

    刘娟红, 周昱程, 纪洪广. 单轴加卸载作用下井壁混凝土能量演化机理. 煤炭学报, 2018, 43(12):3364
    [26] Zhou Y C, Liu J H, Ji H G, et al. Study on bursting liability of fiber reinforced shaft lining concrete based on temperature and compound salt. Mater Rep, 2019, 33(16): 2671 doi: 10.11896/cldb.18070169

    周昱程, 刘娟红, 纪洪广, 等. 温度‒复合盐耦合条件下纤维混凝土井壁冲击倾向性试验研究. 材料导报, 2019, 33(16):2671 doi: 10.11896/cldb.18070169
    [27] Liu J H, Wu R D, Zhou Y C. Experiment of bursting liability of deep underground concrete under complex stress conditions. J China Coal Soc, 2018, 43(1): 79

    刘娟红, 吴瑞东, 周昱程. 基于深地复杂应力条件下混凝土冲击倾向性试验. 煤炭学报, 2018, 43(1):79
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  98
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01
  • 网络出版日期:  2021-08-25
  • 刊出日期:  2022-05-05

目录

    /

    返回文章
    返回