-
摘要: 炼钢过程是极其复杂的工业场景,影响因素多且安全性要求极高,是当前深度学习尚未大规模应用的领域之一。在对深度学习的原理和类型进行梳理的基础之上,结合国内外应用实例,总结了深度学习在炼钢过程中的发展历程与研究现状。指出了深度学习在炼钢过程中应用主要有特征提取简单、泛化能力强、模型可塑性高的优势,同时也面临数据依赖性高、预处理难度大、生产安全性有待验证的挑战。提出了未来随着高精度传感器的应用、物联网的普及、计算硬件的迭代、以及算法的创新,深度学习模型可以更加有效地应用于炼钢的更多场景中,将推动冶金工业智能化发展。Abstract: The steel industry is an important embodiment of national productivity and contributes to the development of the national economy and defense construction as a material foundation. Recently, China’s crude steel production ranked first in the world and in 2020, it exceeded 1 billion tons for the first time, reaching 1.065 billion tons. However, the steel industry is also a major energy consumer and polluter. In the current national coordination to do a good job of “carbon peak” and “carbon-neutral” background, the traditional steelmaking process urgently needs to be transformed into intelligent and green. Recently, as an important branch of machine learning, with artificial neural networks as the basic architecture, deep learning, a nonlinear modeling algorithm that can extract features from data and realize knowledge learning, has been applied in various industrial fields. The steelmaking process is an extremely complex industrial scenario with many influencing factors and high-security requirements. It is also an area where deep learning has not been applied on a large scale yet. Accordingly, in this study, the principles and types of deep learning were compared, and the development history and research status of deep learning in the steelmaking process with domestic and foreign application examples were summarized. The application of deep learning to the steelmaking process mainly has the advantages of simple feature extraction, strong generalization ability, and high model plasticity, but it also faces the challenges of high data dependency, difficult preprocessing, and verification of production safety. In the future, with the application of high-precision sensors, popularization of the Internet of Things, iteration of computing hardware, and innovation of algorithms, deep learning models can be effectively applied to more scenarios in steelmaking, which will promote the intelligent development of the metallurgical industry.
-
Key words:
- steelmaking process /
- deep learning /
- neural network /
- application scenarios /
- data processing /
- nonlinear /
- intelligent
-
表 1 几种深度学习主流方法特征对比
Table 1. Comparison of the features of several mainstream methods of deep learning
Deep learning methods Advantages Disadvantages BP (1) Strong nonlinear mapping capability
(2) High self-learning and self-adaptive capabilities
(3) Some fault tolerance(1) Slow convergence speed
(2) Easy to fall into local minimaCNN (1) Partial connection
(2) Value sharing
(3) Hierarchical expression(1) Need to normalize the dataset
(2) No memory function
(3) Poor natural language processing skillsWNN (1) Fast network convergence
(2) Avoid getting stuck in a local optimum
(3) High precision(1) Difficult to determine the nodes in the hidden layer
(2) No adaptive selection of functionsSOM (1) Self-organization changes network parameters
(2) Only one neuron becomes the competition winner(1) Need to predetermine the number of neurons
(2) Randomly generate the initial value of the weight vector表 2 深度学习模型探索使用案例
Table 2. Deep learning model exploration use cases
No. Year Country Application companies Process Application 1 1990 USA Copperweld Steel Mill Electric arc furnace Process control 2 1990 USA North Star Steel Mill Electric arc furnace Process control 3 1991 Finland Rahhe Steel Mill Continuous casting Pourability forecast 4 1991 Japan Yawata Steel Mill Continuous casting Steel leakage forecast 5 1994 China Guangzhou Steel Mill Electric arc furnace Electrode control 6 1995 China Baoshan Steel Converters Dynamic model 7 1997 China Wuhan Steel Converters Endpoint control 8 2001 China Xingcheng Special Steel Electric arc furnace Temperature forecast 表 3 国内外炼钢企业智能化发展布局
Table 3. Intelligent development layout of domestic and foreign steelmaking enterprises
No. Year Country Application companies Cooperation unit Project content 1 2017 Korea POSCO POSCO Technical Research Laboratories Deep learning projects 2 2017 USA Big River Steel Noodle AI Artificial intelligence platform 3 2018 China Baowu Steel Baidu Online Network Technology AI + steel quality inspection 4 2018 China Anshan Iron and Steel Kingsoft Corporation Limited Precision steel cloud platform 5 2018 China Xiangtan Iron and Steel Huawei Technologies Smart factory project 6 2018 India Tata Steel Tata Steel Digie-Shala Department Process optimization solutions 7 2019 China Jinnan Iron and Steel Alibaba Group Steel scrap AI grading system 8 2019 China Magang Holding Company Tencent Intelligent decision-making and control platform 9 2019 Japan Nippon Steel NS Solutions Corporation NS-DIG intelligent platform 10 2019 Germany Thyssenkrupp Microsoft “Alfred” artificial intelligence solution 11 2020 China Luli Group Ramon Science and Technology Remote intelligent grading system for steel scrap 12 2020 China Baowu Steel Shanghai Baosight Software Baowu ecotechnology platform 表 4 炼钢企业不同应用要求的最佳解决方案
Table 4. Best solution for different applications required by the industry
No. Occurrence frequency Impact Application examples Solutions 1 High Serious Endpoint prediction and defect detection Building deep learning models 2 Low Serious Secondary oxidation of steel and continuous casting leakage Improvement from the process route and
operation system3 High Minor Small fluctuations in the amount of raw and auxiliary
materials addedSolving through lean management 4 Low Minor Temperature measurement on the gun failure and spare
part overdueSolving through routine inspection -
参考文献
[1] Xing Y, Zhang W, Su W, et al. Research of ultra-low emission technologies of the iron and steel industry in China. Chin J Eng, 2021, 43(1): 1邢奕, 张文伯, 苏伟, 等. 中国钢铁行业超低排放之路. 工程科学学报, 2021, 43(1):1 [2] National Bureau of Statistics of China. Statistical bulletin of the People's Republic of China on national economic and social development in 2020. China Stat, 2021(3): 8国家统计局. 中华人民共和国2020年国民经济和社会发展统计公报. 中国统计, 2021(3):8 [3] Feng K. Development analysis of steel materials and industry. Met World, 2021(2): 7 doi: 10.3969/j.issn.1000-6826.2021.02.0002冯凯. 钢铁材料与钢铁工业未来发展分析. 金属世界, 2021(2):7 doi: 10.3969/j.issn.1000-6826.2021.02.0002 [4] Zeng J. Thoughts on intellectualization improvement of iron and steel production process. Metall Ind Autom, 2019, 43(1): 13曾加庆. 关于钢铁流程智能化提升的思考. 冶金自动化, 2019, 43(1):13 [5] Schmidhuber J. Deep learning in neural networks: An overview. Neural Netw, 2015, 61: 85 doi: 10.1016/j.neunet.2014.09.003 [6] Bengio Y, Courville A, Vincent P. Representation learning: A review and new perspectives. IEEE Trans Pattern Anal Mach Intell, 2013, 35(8): 1798 doi: 10.1109/TPAMI.2013.50 [7] Collobert R. Deep learning for efficient discriminative parsing // 14th International Conference on Artificial Intelligence and Statistics. Ft. Lauderdale, 2011: 224 [8] Liu X, Tao F, Yu W B. A neural network enhanced system for learning nonlinear constitutive law and failure initiation criterion of composites using indirectly measurable data. Compos Struct, 2020, 252: 112658 doi: 10.1016/j.compstruct.2020.112658 [9] Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol Rev, 1958, 65(6): 386 doi: 10.1037/h0042519 [10] Pei Y Y, Yang X B, Chuan J P, et al. Time series prediction of microseismic energy level based on feature extraction of onedimensional convolutional neural network. Chin J Eng, 2021, 43(7): 1003裴艳宇, 杨小彬, 传金平, 等. 一维卷积神经网络特征提取下微震能级时序预测. 工程科学学报, 2021, 43(7):1003 [11] Elman J L. Finding structure in time. Cogn Sci, 1990, 14(2): 179 doi: 10.1207/s15516709cog1402_1 [12] Mangiameli P, Chen S K, West D. A comparison of SOM neural network and hierarchical clustering methods. Eur J Oper Res, 1996, 93(2): 402 doi: 10.1016/0377-2217(96)00038-0 [13] Mcculloch W S, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biol, 1990, 52(1-2): 99 doi: 10.1016/S0092-8240(05)80006-0 [14] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors. Nature, 1986, 323(6088): 533 doi: 10.1038/323533a0 [15] Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504 doi: 10.1126/science.1127647 [16] Bi X G. Application of artificial intelligence and expert systems in the steel industry. J Wuhan Univ Sci Tech, 1995, 18(2): 146毕学工. 人工智能和专家系统在钢铁工业中的应用. 武汉钢铁学院学报, 1995, 18(2):146 [17] Wang Y H. Steel Temperature-Soft-Measurement [Dissertation]. Tianjin: Tianjin University of Science and Technology, 2001王玉辉. 钢水温度软测量[学位论文]. 天津: 天津科技大学, 2001 [18] Liu L. The full automatic control technique for converter blowing process. Metall Ind Autom, 1999, 23(4): 1刘浏. 转炉全自动吹炼技术. 冶金自动化, 1999, 23(4):1 [19] Ding R, Liu L. Artificial intelligence static control model in converter steelmaking. Iron &Steel, 1997, 32(1): 22丁容, 刘浏. 转炉炼钢过程人工智能静态控制模型. 钢铁, 1997, 32(1):22 [20] Sun S Y, Li S P, Wang J R, et al. Intelligent control method for the secondary cooling of continuous casting. J Univ Sci Technol Beijing, 1997, 19(2): 188孙韶元, 李世平, 王俊然, 等. 连铸二冷控制的智能化方法. 北京科技大学学报, 1997, 19(2):188 [21] Yu Z X, Liu L C, XiaoW B, et al. Development of computer controlled LD blowing process at NO. 3 steel plant,WISCO. Iron Steel, 2004, 39(8): 58 doi: 10.3321/j.issn:0449-749X.2004.08.010余志祥, 刘路长, 肖文斌, 等. 武钢三炼钢计算机炼钢技术的新进展. 钢铁, 2004, 39(8):58 doi: 10.3321/j.issn:0449-749X.2004.08.010 [22] Wang Q K, Hu R F, Lei J Y, et al. Development and application of dynamic controling system for sub-lance used in NIPPON steel corporation. Iron Steel, 1985, 20(1): 51王庆奎, 胡瑞富, 雷家源, 等. 新日铁副枪动态控制系统的发展和应用. 钢铁, 1985, 20(1):51 [23] Hua C J, Wang M, Zhang M Y, et al. Effect of submerged entry nozzle wall surface morphologies on boundary layer structure and alumina inclusions transport. Chin J Eng, 2021, 43(7): 925华承健, 王敏, 张孟昀, 等. 浸入式水口内壁特征对边界层流场结构和氧化铝夹杂物运动行为的影响. 工程科学学报, 2021, 43(7):925 [24] Zhou C G, Hu J Z, Jiang C M, et al. Prediction model of phosphorus content in dephosphorization converter end point based on BP neural network algorithm. Steelmaking, 2021, 37(2): 10周朝刚, 胡锦榛, 蒋朝敏, 等. 基于BP神经网络算法的脱磷转炉终点磷含量预报模型. 炼钢, 2021, 37(2):10 [25] Li C R, Zhao H W, Xie X, et al. Prediction of end-point phosphorus content for BOF based on LM BP neural network. Iron Steel, 2011, 46(4): 23李长荣, 赵浩文, 谢祥, 等. 基于L-M算法BP神经网络的转炉炼钢终点磷含量预报. 钢铁, 2011, 46(4):23 [26] He F, Zhang L Y. Prediction model of end-point phosphorus content in BOF steelmaking process based on PCA and BP neural network. J Process Control, 2018, 66: 51 doi: 10.1016/j.jprocont.2018.03.005 [27] Gao F, Bao Y P, Wang M, et al. Prediction model of end-point phosphorus content of converter based on FA-ELM. Iron Steel, 2020, 55(12): 24高放, 包燕平, 王敏, 等. 基于FA-ELM的转炉终点磷含量预测模型. 钢铁, 2020, 55(12):24 [28] Xuan M T, Li J J, Wang N, et al. Endpoint prediction of basic oxygen furnace steelmaking based on FOA-GRNN model. J Mater Metall, 2019, 18(1): 31铉明涛, 李娇娇, 王楠, 等. 基于FOA-GRNN模型的转炉炼钢终点预报. 材料与冶金学报, 2019, 18(1):31 [29] Qi Z Y, Gao K, Zhao B F, et al. Research on application of RBF neural network in endpoint prediction of converter steelmaking. Wirel Internet Technol, 2017(4): 106 doi: 10.3969/j.issn.1672-6944.2017.04.049祁子怡, 高坤, 赵宝芳, 等. 基于RBF神经网络在转炉炼钢终点预报中的应用研究. 无线互联科技, 2017(4):106 doi: 10.3969/j.issn.1672-6944.2017.04.049 [30] Zhang H Y, Zhou Q L, Yuan Z X, et al. RBF neural network base on affinity propagation clustering and its application in BOF steelmaking. J Iron Steel Res, 2014, 26(1): 22张辉宜, 周奇龙, 袁志祥, 等. 基于AP聚类的RBF神经网络研究及其在转炉炼钢中的应用. 钢铁研究学报, 2014, 26(1):22 [31] Wang Z, Chang J, Ju Q P, et al. Prediction model of end-point manganese content for BOF steelmaking process. ISIJ Int, 2012, 52(9): 1585 doi: 10.2355/isijinternational.52.1585 [32] Liu Z M, Zhan D P, Ge Q Z, et al. Prediction model of mass fraction of endpoint carbon of electric furnace based on BP neural network. Ind Heat, 2018, 47(4): 28 doi: 10.3969/j.issn.1002-1639.2018.04.008刘志明, 战东平, 葛启桢, 等. 基于BP神经网络的电炉终点碳质量分数预报模型. 工业加热, 2018, 47(4):28 doi: 10.3969/j.issn.1002-1639.2018.04.008 [33] Ma R. Study on Intelligent Control Technique for the Electric Arc Furnace Steelmaking [Dissertation]. Xi’an: Northwestern Polytechnical University, 2006马戎. 智能控制技术在炼钢电弧炉中的应用研究[学位论文]. 西安: 西北工业大学, 2006 [34] Liu K, Liu L, He P, et al. Application of increment artificial neural network model to prediction of end-point carbon, phosphorus and temperature for an 100 t EAF steelmaking. Special Steel, 2004, 25(3): 40 doi: 10.3969/j.issn.1003-8620.2004.03.013刘锟, 刘浏, 何平, 等. 增量神经网络模型预报100t电弧炉终点碳、磷和温度的应用. 特殊钢, 2004, 25(3):40 doi: 10.3969/j.issn.1003-8620.2004.03.013 [35] Li Q, Cao G. Forecasting model for the molten steel temperature in refining furnace based on artificial neural network and expert system. Heavy Mach, 2010(6): 22 doi: 10.3969/j.issn.1001-196X.2010.06.007李强, 曹刚. 基于人工神经网络和专家系统的精炼过程钢水温度预测模型. 重型机械, 2010(6):22 doi: 10.3969/j.issn.1001-196X.2010.06.007 [36] Wu Y. Study on Temperature Forecast and Control Model of RH Vacuum Refining [Dissertation]. Wuhan: Wuhan University of Science and Technology, 2014吴扬. RH真空精炼温度预报与控制模型的研究[学位论文]. 武汉: 武汉科技大学, 2014 [37] He D F, He F, Xu A J, et al. On-line liquid steel temperature control for the steelmaking-continuous casting process. J Univ Sci Technol Beijing, 2014, 36 (Suppl 1): 200贺东风, 何飞, 徐安军, 等. 炼钢连铸流程在线钢水温度控制. 北京科技大学学报, 2014, 36(增刊1): 200 [38] Fu G Q, Liu Q, Wang Z, et al. Grey box model for predicting the LF end-point temperature of molten steel. J Univ Sci Technol Beijing, 2013, 35(7): 948付国庆, 刘青, 汪宙, 等. LF精炼终点钢水温度灰箱预报模型. 北京科技大学学报, 2013, 35(7):948 [39] Feng C S, Xiao B Q, He F. A presetting model of molten steel temperature based on BP neural network. Res Iron Steel, 2012, 40(3): 30冯春松, 肖步庆, 何飞. 基于BP神经网络的钢水温度预定模型. 钢铁研究, 2012, 40(3):30 [40] Fu J, Tao B S, Chen C Y, et al. Research on oxygen model for BOF based on BP neural network. Metall Ind Autom, 2014, 38(4): 11 doi: 10.3969/j.issn.1000-7059.2014.04.003付佳, 陶百生, 陈春雨, 等. 基于BP神经网络的转炉供氧模型研究. 冶金自动化, 2014, 38(4):11 doi: 10.3969/j.issn.1000-7059.2014.04.003 [41] Ai X L, Wang Y S, Tang W M. Prediction of oxyen blow rate in BP neural network based converter refining. Steelmaking, 2013, 29(2): 34艾晓礼, 王玉生, 唐文明. 基于BP神经网络的转炉炼钢吹氧量预测. 炼钢, 2013, 29(2):34 [42] Li A L, Zhao D Z, Guo Z B, et al. Prediction of converter oxygen consumption in improved deep belief network. China Meas Test, 2020, 46(6): 1 doi: 10.11857/j.issn.1674-5124.2019080078李爱莲, 赵多祯, 郭志斌, 等. 改进深度信念网络的转炉耗氧量预测. 中国测试, 2020, 46(6):1 doi: 10.11857/j.issn.1674-5124.2019080078 [43] Zhang Z Y, Sun Y G. Prediction of oxygen amount in converter based on grey Elman neural network. Comput Appl Softw, 2018, 35(11): 103张子阳, 孙彦广. 基于灰色Elman神经网络转炉吹氧量的预测. 计算机应用与软件, 2018, 35(11):103 [44] Yang Z Y, Ren X J. Mathematic model of neural network with powder consumption optimization for hot metal pretreatment. Res Iron Steel, 2011, 39(3): 16杨志勇, 任小佳. 铁水预处理粉剂用量优化的神经网络模型. 钢铁研究, 2011, 39(3):16 [45] Zhang H, Chen F Y, Wang Y H. End point optimized control for BOF steel-making process based on the characteristic of subsidiary material’s movement. J Iron Steel Res, 2013, 25(1): 5张华, 陈凤银, 王艳红. 基于辅料资源运行特性的炼钢终点优化控制. 钢铁研究学报, 2013, 25(1):5 [46] Ou Q L, Wu X Z, Ou D X. PSO-BP-PID control of ladle furnace proportioning system. Control Eng China, 2013, 20(5): 825 doi: 10.3969/j.issn.1671-7848.2013.05.009欧青立, 吴兴中, 欧达贤. 钢包炉配料PSO-BP-PID控制研究. 控制工程, 2013, 20(5):825 doi: 10.3969/j.issn.1671-7848.2013.05.009 [47] Zhao Q, Chen Y R, Wang Y, et al. Light intensity and image information used in steelmaking end-point control. Chin J Sci Instrum, 2005, 26(8): 575赵琦, 陈延如, 王昀, 等. 光强与图像信息在转炉炼钢终点判断中的应用. 仪器仪表学报, 2005, 26(8):575 [48] Ma H T, Wang S S, Wu L B, et al. AOD furnace splash soft-sensor in the smelting process based on improved BP neural network // Proceedings of the Society of Photo-optical Instrumentation Engineers. Changchun, 2017(1060): 739 [49] Pang S Y, Wang S Y, Jia H S. Recognition of converter flame state based on ResNet neural network. Metall Ind Autom, 2021, 45(1): 34庞殊杨, 王姝洋, 贾鸿盛. 基于残差神经网络实现转炉火焰状态识别. 冶金自动化, 2021, 45(1):34 [50] Li C, Liu H. Carbon content prediction of converter steelmaking end-point based on improved MTBCD flame image feature extraction. Computer Integrated Manufacturing Systems, https://kns.cnki.net/kcms/detail/11.5946.TP.20210428.1806.020.html李超, 刘辉. 改进MTBCD火焰图像特征提取的转炉炼钢终点碳含量预测. 计算机集成制造系统,https://kns.cnki.net/kcms/detail/11.5946.TP.20210428.1806.020.html [51] Mao X X, Liu Z, Ren J R, et al. Slab surface defect detection system based on deep learning. Ind Control Comput, 2019, 32(3): 66毛欣翔, 刘志, 任静茹, 等. 基于深度学习的连铸板坯表面缺陷检测系统. 工业控制计算机, 2019, 32(3):66 [52] Konovalenko I, Maruschak P, Brezinová J, et al. Steel surface defect classification using deep residual neural network. Metals, 2020, 10(6): 846 doi: 10.3390/met10060846 [53] An B, Yan B, Liu Y J. The online quality evaluation of continuous casting billet based on BP and kohonen neural network. J North Univ China Nat Sci, 2016, 37(3): 268安波, 闫彬, 刘永姜. 基于BP和Kohonen神经网络结合的铸坯在线质量评估. 中北大学学报(自然科学版), 2016, 37(3):268 [54] Han Z. Research on Billet Quality Analysis Algorithm Based on Neural Networks [Dissertation]. Dalian: Dalian University of Technology, 2017韩舟. 基于神经元网络技术的铸坯质量分析算法研究[学位论文]. 大连: 大连理工大学, 2017 [55] Fan J D, Wang W Y, Rong Y C, et al. Application of RBF neural network to prediction of breakout in continuous casting process. J Shanghai Univ (Nat Sci Ed) , 2001, 7(5): 391范建东, 王唯一, 荣亦诚, 等. RBF神经网络应用于连铸漏钢预报. 上海大学学报(自然科学版), 2001, 7(5):391 [56] Yang Q, Peng L. Quantum wavelet neural networks and its application in breakout prediction. Comput Eng Appl, 2008, 44(15): 242 doi: 10.3778/j.issn.1002-8331.2008.15.075杨琴, 彭力. 量子小波神经网络及其在漏钢预报中的应用. 计算机工程与应用, 2008, 44(15):242 doi: 10.3778/j.issn.1002-8331.2008.15.075 [57] Zhang B G, Zhang R Z, Wang G, et al. Breakout prediction for continuous casting using genetic algorithm-based back propagation neural network model. Int J Model Identif Control, 2012, 16(3): 199 doi: 10.1504/IJMIC.2012.047727 [58] Li Y, Wang Z, Ao Z G, et al. Optimization for breakout prediction system of BP neural network. Control Decis, 2010, 25(3): 453 -