-
摘要: 钢铁工业是CO2的排放大户,也是CO2资源潜在用户,通过研究证实了CO2能够在炼钢流程中实现高效利用。二氧化碳绿色洁净炼钢技术通过利用CO2的反应冷却、气泡增殖、弱氧化、强冲击等独有特性,解决了炼钢烟尘和炉渣固废源头减量,钢水磷、氮、氧洁净控制诸多炼钢工艺难题,构建了CO2炼钢理论体系,实现了CO2利用和炼钢生产工艺的结合。本技术作为“中国低碳原创技术”,促进了我国钢铁工业绿色低碳技术的发展,我国每年将减少炼钢固体污染物产生约1000万吨,温室气体减排约2600万吨,是建设“碳中和”国家的重要助力。Abstract: The iron and steel industry is not only a large emitter of CO2 but also a potential user of CO2 resources. Research has confirmed that CO2 can be used efficiently in steelmaking. The carbon dioxide green and clean steelmaking technology solves many problems in the steelmaking process, such as the generation of steelmaking dust and slag solid waste at the source is reduced, and phosphorus, nitrogen, and oxygen in the molten steel are controlled within the optimal concentrations using the unique characteristics of CO2 such as reactive cooling, bubble proliferation, weak oxidation, and strong impact. These characteristics are the basis for the theoretical system of CO2 steelmaking and ensure optimal CO2 utilization and steelmaking. This technology created a precedent for the high-quality utilization of CO2 in the iron and steel industry, formed a standard system for the resource utilization of CO2 in the iron and steel industry for the first time, and is an innovation in the utilization and emission reduction methods of the greenhouse gas CO2. As “China’s original low-carbon technology,” this has promoted the development of green and low-carbon technology in China’s iron and steel industry and will reduce the production of solid pollutants in steelmaking and greenhouse gas by 10 million tons and 26 million tons annually, respectively, which is an important help in building a “carbon neutral” country. Moreover, this provides an important technical guarantee for winning the defensive war of “blue sky, clear water, and pure land,” and comprehensively demonstrates the outstanding contribution of the “Chinese creation” to energy conservation and emission reduction of the world’s iron and steel industry.
-
Key words:
- carbon dioxide /
- resource utilization /
- steelmaking /
- reduce dust /
- dephosphorization /
- degassing /
- clean steel
-
表 1 各元素与CO2反应热力学数据
Table 1. Thermodynamic data of the reaction between elements and carbon dioxide
Reaction equation ∆Gϴ/(J·mol−1) ∆Gϴ(T=1923 K)/(J·mol−1) ∆H(T = 298 K)/(J·mol−1) [C] + CO2(g) = 2CO(g) 140170 − 125.60T −101358.80 172520.00 2/3[Al] + CO2(g) = 1/3 (Al2O3) + CO(g) −238845 + 41.75T −158559.75 −275120.00 1/2[Si] + CO2(g) = 1/2(SiO2)(s) + CO(g) −88430 + 0.80T −86891.60 −172180.00 [Mn] + CO2(g) = (MnO) + CO(g) −126880 + 39.98T −49998.46 −101910.00 2/5[P] + CO2(g) = 1/5(P2O5) + CO(g) 91555 − 16.86T 59133.22 −26620.00 2/5[P] + CO2(g) + 4/5CaO = 1/5(4CaO·P2O5) + CO(g) −144446 + 43.22T −61333.94 −55820.00 Fe(l) + CO2(g) = (FeO) + CO(g) 48980 − 40.62T −29132.26 40370.00 -
参考文献
[1] Yu B Y, Zhao G P, An R Y, et al. Research on China's CO2 emission pathway under carbon neutral target. J Beijing Inst Technol (Soc Sci Ed) , 2021, 23(2): 17余碧莹, 赵光普, 安润颖, 等. 碳中和目标下中国碳排放路径研究. 北京理工大学学报(社会科学版), 2021, 23(2):17 [2] Zhang J. Analysis on Influencing Factors of CO2 and Mitigative Measures in Iron and Steel Industry [Dissertation]. Dalian: Dalian University of Technology, 2008张敬. 中国钢铁行业CO2排放影响因素及减排途径研究[学位论文]. 大连: 大连理工大学, 2008 [3] Zhao Y Q, Li X C, Li G J. Current situation of CO2 emission and point sources distribution in China's iron and steel industry. J Iron Steel Res, 2012, 24(5): 1赵晏强, 李小春, 李桂菊. 中国钢铁行业CO2排放现状及点源分布特征. 钢铁研究学报, 2012, 24(5):1 [4] Wang P, Jiang Z Y, Zhang X X, et al. Long-term scenario forecast of production routes, energy consumption and emissions for Chinese steel industry. J Univ Sci Technol Beijing, 2014, 36(12): 1683汪鹏, 姜泽毅, 张欣欣, 等. 中国钢铁工业流程结构、能耗和排放长期情景预测. 北京科技大学学报, 2014, 36(12):1683 [5] Lu X, Bai H, Zhao L H, et al. Relationship between the energy consumption and CO2 emission reduction of iron and steel plants. J Univ Sci Technol Beijing, 2012, 34(12): 1445卢鑫, 白皓, 赵立华, 等. 钢铁企业能源消耗与CO2减排关系. 北京科技大学学报, 2012, 34(12):1445 [6] Bai H, Liu P, Li H X, et al. CO2 emission model and reduction strategy of the steelmaking industry. J Univ Sci Technol Beijing, 2010, 32(12): 1623白皓, 刘璞, 李宏煦, 等. 钢铁企业CO2排放模型及减排策略. 北京科技大学学报, 2010, 32(12):1623 [7] Fu P F, Zhang Q. Investigation on steelmaking dust recycling and iron oxide red preparing. J Univ Sci Technol Beijing Miner Metall Mater, 2008, 15(1): 24 [8] Wang L F. The new development of steel-making dust disposal technics. Energy Metall Ind, 2006, 25(4): 46 doi: 10.3969/j.issn.1001-1617.2006.04.014王令福. 炼钢粉尘处理工艺的最新发展. 冶金能源, 2006, 25(4):46 doi: 10.3969/j.issn.1001-1617.2006.04.014 [9] Zhou W T, Han Y X, Sun Y S, et al. Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment. Int J Miner Metall Mater, 2020, 27(4): 443 doi: 10.1007/s12613-019-1897-3 [10] Diao J, Qiao Y, Liu X, et al. Slag formation path during dephosphorization process in a converter. Int J Miner Metall Mater, 2015, 22(12): 1260 doi: 10.1007/s12613-015-1193-9 [11] Li S J, Cheng G G, Miao Z Q, et al. Effect of slag on oxide inclusions in carburized bearing steel during industrial electroslag remelting. Int J Miner Metall Mater, 2019, 26(3): 291 doi: 10.1007/s12613-019-1737-5 [12] Wang M, Bao Y P, Yang Q, et al. Coordinated control of carbon and oxygen for ultra-low-carbon interstitial-free steel in a smelting process. Int J Miner Metall Mater, 2015, 22(12): 1252 doi: 10.1007/s12613-015-1192-x [13] Li M M, Li L, Li Q, et al. Modeling of mixing behavior in a combined blowing steelmaking converter with a filter-based Euler-Lagrange model. JOM, 2018, 70(10): 2051 doi: 10.1007/s11837-018-2889-x [14] Zhu R, Han B C, Dong K, et al. A review of carbon dioxide disposal technology in the converter steelmaking process. Int J Miner Metall Mater, 2020, 27(11): 1421 doi: 10.1007/s12613-020-2065-5 [15] Lü M, Zhu R, Bi X R, et al. Application research of carbon dioxide in BOF steelmaking process. J Univ Sci Technol Beijing, 2011, 33(Suppl 1): 126吕明, 朱荣, 毕秀荣, 等. 二氧化碳在转炉炼钢中的应用研究. 北京科技大学学报, 2011, 33(增刊1): 126 [16] Wei G S, Han B C, Zhu R. Metallurgical reaction behavior of CO2 as RH lifting gas. Chin J Eng, 2020, 42(2): 203魏光升, 韩宝臣, 朱荣. CO2作为RH提升气的冶金反应行为研究. 工程科学学报, 2020, 42(2):203 [17] Zhu R, Yi C, Chen B Y, et al. Inner circulation research of steelmaking dust by COMI steelmaking process. Energy Metall Ind, 2010, 29(1): 48 doi: 10.3969/j.issn.1001-1617.2010.01.017朱荣, 易操, 陈伯瑜, 等. 应用COMI炼钢工艺控制炼钢烟尘内循环的研究. 冶金能源, 2010, 29(1):48 doi: 10.3969/j.issn.1001-1617.2010.01.017 [18] Yin Z J, Zhu R, Yi C, et al. Fundamental research on controlling BOF dust by COMI steel-making process. Iron Steel, 2009, 44(10): 92 doi: 10.3321/j.issn:0449-749X.2009.10.021尹振江, 朱荣, 易操, 等. 应用COMI炼钢工艺控制转炉烟尘基础研究. 钢铁, 2009, 44(10):92 doi: 10.3321/j.issn:0449-749X.2009.10.021 [19] Ning X J, Yin Z J, Yi C, et al. Experimental research on dust reduction in steelmaking by CO2. Steelmaking, 2009, 25(5): 32宁晓钧, 尹振江, 易操, 等. 利用CO2减少炼钢烟尘的实验研究. 炼钢, 2009, 25(5):32 [20] Bi X R, Liu R Z, Zhu R, et al. Research on mechanism of dust generation in converter. Ind Heat, 2010, 39(6): 13 doi: 10.3969/j.issn.1002-1639.2010.06.004毕秀荣, 刘润藻, 朱荣, 等. 转炉炼钢烟尘形成机理研究. 工业加热, 2010, 39(6):13 doi: 10.3969/j.issn.1002-1639.2010.06.004 [21] Yi C, Zhu R, Chen B Y, et al. Experimental research on reducing the dust of BOF in CO2 and O2 mixed blowing steelmaking process. ISIJ Int, 2009, 49(11): 1694 doi: 10.2355/isijinternational.49.1694 [22] Li Z, Zhu R, Ma G, et al. Laboratory investigation into reduction the production of dust in basic oxygen steelmaking. Ironmak Steelmak, 2017, 44(8): 601 doi: 10.1080/03019233.2016.1223906 [23] Lü M, Zhu R, Wei X Y, et al. Research on top and bottom mixed blowing CO2 in converter steelmaking process. Steel Res Int, 2012, 83(1): 11 doi: 10.1002/srin.201100166 [24] Li Z Z, Zhu R, Zhu Y Q. Effect of CO2 on material and energy in dephosphorization converters. Chin J Eng, 2016, 38(Sup 1): 232李智峥, 朱荣, 朱益强. CO2对脱磷转炉物料和能量的影响. 工程科学学报, 2016, 38(增刊1): 232 [25] Li Z Z, Zhu R, Liu R Z, et al. Comparison of smelting effects by bottom blowing different gases. Iron Steel, 2016, 51(9): 40李智峥, 朱荣, 刘润藻, 等. 炼钢过程底吹气体的冶炼效果对比. 钢铁, 2016, 51(9):40 [26] Li Z Z. Investigations on Fundamental Theory of CO2 Applied in Steelmaking Processes [Dissertation]. Beijing: University of Science and Technology Beijing, 2017李智峥. CO2应用于炼钢的基础理论研究[学位论文]. 北京: 北京科技大学, 2017 [27] Wei G S, Zhu R, Wu X T, et al. Technological innovations of carbon dioxide injection in EAF-LF steelmaking. JOM, 2018, 70(6): 969 doi: 10.1007/s11837-018-2814-3 [28] Wang X L. Research on Steelmaking Technology of 300 Ton Converter by Blowing Carbon Dioxide [Dissertation]. Beijing: University of Science and Technology Beijing, 2018王雪亮. 300吨转炉喷吹CO2炼钢工艺技术研究[学位论文]. 北京: 北京科技大学, 2018 [29] Wang Y, Zhao L, Otto A, et al. A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Procedia, 2017, 114: 650 doi: 10.1016/j.egypro.2017.03.1209 [30] Guandalini G, Romano M C, Ho M, et al. A sequential approach for the economic evaluation of new CO2 capture technologies for power plants. Int J Greenh Gas Control, 2019, 84: 219 doi: 10.1016/j.ijggc.2019.03.006 [31] Gardarsdottir S, de Lena E, Romano M, et al. Comparison of technologies for CO2 capture from cement production—part 2: Cost analysis. Energies, 2019, 12(3): 542 doi: 10.3390/en12030542 -