• 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化碳绿色洁净炼钢技术及应用

姜娟娟 董凯 朱荣 魏光升

姜娟娟, 董凯, 朱荣, 魏光升. 二氧化碳绿色洁净炼钢技术及应用[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.09.23.002
引用本文: 姜娟娟, 董凯, 朱荣, 魏光升. 二氧化碳绿色洁净炼钢技术及应用[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.09.23.002
JIANG Juan-juan, DONG Kai, ZHU Rong, WEI Guang-sheng. Carbon dioxide green and clean steelmaking technology and its application[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.09.23.002
Citation: JIANG Juan-juan, DONG Kai, ZHU Rong, WEI Guang-sheng. Carbon dioxide green and clean steelmaking technology and its application[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.09.23.002

二氧化碳绿色洁净炼钢技术及应用

doi: 10.13374/j.issn2095-9389.2021.09.23.002
基金项目: 国家自然科学基金资助项目(51974024,52074024)
详细信息
    通讯作者:

    E-mail: dongkai@ustb.edu.cn

  • 中图分类号: TF71

Carbon dioxide green and clean steelmaking technology and its application

More Information
  • 摘要: 钢铁工业是CO2的排放大户,也是CO2资源潜在用户,通过研究证实了CO2能够在炼钢流程中实现高效利用。二氧化碳绿色洁净炼钢技术通过利用CO2的反应冷却、气泡增殖、弱氧化、强冲击等独有特性,解决了炼钢烟尘和炉渣固废源头减量,钢水磷、氮、氧洁净控制诸多炼钢工艺难题,构建了CO2炼钢理论体系,实现了CO2利用和炼钢生产工艺的结合。本技术作为“中国低碳原创技术”,促进了我国钢铁工业绿色低碳技术的发展,我国每年将减少炼钢固体污染物产生约1000万吨,温室气体减排约2600万吨,是建设“碳中和”国家的重要助力。

     

  • 图  1  烟尘产生机理

    Figure  1.  Dust generation mechanism

    图  2  火点区温度随CO2喷吹比例的变化

    Figure  2.  Fire point area temperature variation with the CO2 mixing ratio

    图  3  冶炼过程炼钢烟尘与TFe量变化

    Figure  3.  Variation of steelmaking dust and TFe in the smelting process

    图  4  炼钢粗灰产生量随CO2用量变化

    Figure  4.  Variation of coarse ash production in steelmaking with CO2 consumption

    图  5  熔池升温和脱磷的温度与时间

    Figure  5.  Temperature and time of bath heating and dephosphorization

    图  6  CO2比例分段动态调控软件界面

    Figure  6.  Software interface of CO2 ratio dynamic adjustment in stages

    图  7  脱磷转炉终点P的质量分数变化对比

    Figure  7.  Comparison of the P mass fraction change at the end point of the dephosphorization converter

    图  8  常规转炉终点P的质量分数变化对比

    Figure  8.  Comparison of the P mass fraction change at the end point of the conventional converter

    图  9  CO2吸附脱氮反应作用过程

    Figure  9.  CO2 adsorption denitrification reaction process

    图  10  不同介质CO产生量随吹炼进程变化

    Figure  10.  Variation of CO production in different media with the blowing process

    图  11  纯氧及CO2混合顶吹下CO分压

    Figure  11.  Partial pressure of CO under top blowing of pure oxygen and mixed CO2

    图  12  射流供氧−动能随CO2比例变化

    Figure  12.  Variation of the jet oxygen supply-kinetic energy with the CO2 ratio

    图  13  300 t转炉终点钢液碳氧积

    Figure  13.  End-point carbon and oxygen equilibrium in the liquid steel of the 300 t converter

    图  14  电弧炉终点钢液碳氧积

    Figure  14.  End-point carbon and oxygen equilibrium in the liquid steel of the electric arc furnace

    图  15  “工业尾气→CO2回收→炼钢利用”的CO2工业大规模利用新途径

    Figure  15.  New ways of large-scale industrial utilization of CO2 in “industrial tail gas → CO2 recovery → steelmaking utilization”

    表  1  各元素与CO2反应热力学数据

    Table  1.   Thermodynamic data of the reaction between elements and carbon dioxide

    Reaction equationGϴ/(J·mol−1)GϴT=1923 K)/(J·mol−1HT = 298 K)/(J·mol−1
    [C] + CO2(g) = 2CO(g)140170 − 125.60T−101358.80172520.00
    2/3[Al] + CO2(g) = 1/3 (Al2O3) + CO(g)−238845 + 41.75T−158559.75−275120.00
    1/2[Si] + CO2(g) = 1/2(SiO2)(s) + CO(g)−88430 + 0.80T−86891.60−172180.00
    [Mn] + CO2(g) = (MnO) + CO(g)−126880 + 39.98T−49998.46−101910.00
    2/5[P] + CO2(g) = 1/5(P2O5) + CO(g)91555 − 16.86T59133.22−26620.00
    2/5[P] + CO2(g) + 4/5CaO = 1/5(4CaO·P2O5) + CO(g)−144446 + 43.22T−61333.94−55820.00
    Fe(l) + CO2(g) = (FeO) + CO(g)48980 − 40.62T−29132.2640370.00
    下载: 导出CSV
  • [1] Yu B Y, Zhao G P, An R Y, et al. Research on China's CO2 emission pathway under carbon neutral target. J Beijing Inst Technol (Soc Sci Ed), 2021, 23(2): 17

    余碧莹, 赵光普, 安润颖, 等. 碳中和目标下中国碳排放路径研究. 北京理工大学学报(社会科学版), 2021, 23(2):17
    [2] Zhang J. Analysis on Influencing Factors of CO2 and Mitigative Measures in Iron and Steel Industry [Dissertation]. Dalian: Dalian University of Technology, 2008

    张敬. 中国钢铁行业CO2排放影响因素及减排途径研究[学位论文]. 大连: 大连理工大学, 2008
    [3] Zhao Y Q, Li X C, Li G J. Current situation of CO2 emission and point sources distribution in China's iron and steel industry. J Iron Steel Res, 2012, 24(5): 1

    赵晏强, 李小春, 李桂菊. 中国钢铁行业CO2排放现状及点源分布特征. 钢铁研究学报, 2012, 24(5):1
    [4] Wang P, Jiang Z Y, Zhang X X, et al. Long-term scenario forecast of production routes, energy consumption and emissions for Chinese steel industry. J Univ Sci Technol Beijing, 2014, 36(12): 1683

    汪鹏, 姜泽毅, 张欣欣, 等. 中国钢铁工业流程结构、能耗和排放长期情景预测. 北京科技大学学报, 2014, 36(12):1683
    [5] Lu X, Bai H, Zhao L H, et al. Relationship between the energy consumption and CO2 emission reduction of iron and steel plants. J Univ Sci Technol Beijing, 2012, 34(12): 1445

    卢鑫, 白皓, 赵立华, 等. 钢铁企业能源消耗与CO2减排关系. 北京科技大学学报, 2012, 34(12):1445
    [6] Bai H, Liu P, Li H X, et al. CO2 emission model and reduction strategy of the steelmaking industry. J Univ Sci Technol Beijing, 2010, 32(12): 1623

    白皓, 刘璞, 李宏煦, 等. 钢铁企业CO2排放模型及减排策略. 北京科技大学学报, 2010, 32(12):1623
    [7] Fu P F, Zhang Q. Investigation on steelmaking dust recycling and iron oxide red preparing. J Univ Sci Technol Beijing Miner Metall Mater, 2008, 15(1): 24
    [8] Wang L F. The new development of steel-making dust disposal technics. Energy Metall Ind, 2006, 25(4): 46 doi: 10.3969/j.issn.1001-1617.2006.04.014

    王令福. 炼钢粉尘处理工艺的最新发展. 冶金能源, 2006, 25(4):46 doi: 10.3969/j.issn.1001-1617.2006.04.014
    [9] Zhou W T, Han Y X, Sun Y S, et al. Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment. Int J Miner Metall Mater, 2020, 27(4): 443 doi: 10.1007/s12613-019-1897-3
    [10] Diao J, Qiao Y, Liu X, et al. Slag formation path during dephosphorization process in a converter. Int J Miner Metall Mater, 2015, 22(12): 1260 doi: 10.1007/s12613-015-1193-9
    [11] Li S J, Cheng G G, Miao Z Q, et al. Effect of slag on oxide inclusions in carburized bearing steel during industrial electroslag remelting. Int J Miner Metall Mater, 2019, 26(3): 291 doi: 10.1007/s12613-019-1737-5
    [12] Wang M, Bao Y P, Yang Q, et al. Coordinated control of carbon and oxygen for ultra-low-carbon interstitial-free steel in a smelting process. Int J Miner Metall Mater, 2015, 22(12): 1252 doi: 10.1007/s12613-015-1192-x
    [13] Li M M, Li L, Li Q, et al. Modeling of mixing behavior in a combined blowing steelmaking converter with a filter-based Euler-Lagrange model. JOM, 2018, 70(10): 2051 doi: 10.1007/s11837-018-2889-x
    [14] Zhu R, Han B C, Dong K, et al. A review of carbon dioxide disposal technology in the converter steelmaking process. Int J Miner Metall Mater, 2020, 27(11): 1421 doi: 10.1007/s12613-020-2065-5
    [15] Lü M, Zhu R, Bi X R, et al. Application research of carbon dioxide in BOF steelmaking process. J Univ Sci Technol Beijing, 2011, 33(Suppl 1): 126

    吕明, 朱荣, 毕秀荣, 等. 二氧化碳在转炉炼钢中的应用研究. 北京科技大学学报, 2011, 33(增刊1): 126
    [16] Wei G S, Han B C, Zhu R. Metallurgical reaction behavior of CO2 as RH lifting gas. Chin J Eng, 2020, 42(2): 203

    魏光升, 韩宝臣, 朱荣. CO2作为RH提升气的冶金反应行为研究. 工程科学学报, 2020, 42(2):203
    [17] Zhu R, Yi C, Chen B Y, et al. Inner circulation research of steelmaking dust by COMI steelmaking process. Energy Metall Ind, 2010, 29(1): 48 doi: 10.3969/j.issn.1001-1617.2010.01.017

    朱荣, 易操, 陈伯瑜, 等. 应用COMI炼钢工艺控制炼钢烟尘内循环的研究. 冶金能源, 2010, 29(1):48 doi: 10.3969/j.issn.1001-1617.2010.01.017
    [18] Yin Z J, Zhu R, Yi C, et al. Fundamental research on controlling BOF dust by COMI steel-making process. Iron Steel, 2009, 44(10): 92 doi: 10.3321/j.issn:0449-749X.2009.10.021

    尹振江, 朱荣, 易操, 等. 应用COMI炼钢工艺控制转炉烟尘基础研究. 钢铁, 2009, 44(10):92 doi: 10.3321/j.issn:0449-749X.2009.10.021
    [19] Ning X J, Yin Z J, Yi C, et al. Experimental research on dust reduction in steelmaking by CO2. Steelmaking, 2009, 25(5): 32

    宁晓钧, 尹振江, 易操, 等. 利用CO2减少炼钢烟尘的实验研究. 炼钢, 2009, 25(5):32
    [20] Bi X R, Liu R Z, Zhu R, et al. Research on mechanism of dust generation in converter. Ind Heat, 2010, 39(6): 13 doi: 10.3969/j.issn.1002-1639.2010.06.004

    毕秀荣, 刘润藻, 朱荣, 等. 转炉炼钢烟尘形成机理研究. 工业加热, 2010, 39(6):13 doi: 10.3969/j.issn.1002-1639.2010.06.004
    [21] Yi C, Zhu R, Chen B Y, et al. Experimental research on reducing the dust of BOF in CO2 and O2 mixed blowing steelmaking process. ISIJ Int, 2009, 49(11): 1694 doi: 10.2355/isijinternational.49.1694
    [22] Li Z, Zhu R, Ma G, et al. Laboratory investigation into reduction the production of dust in basic oxygen steelmaking. Ironmak Steelmak, 2017, 44(8): 601 doi: 10.1080/03019233.2016.1223906
    [23] Lü M, Zhu R, Wei X Y, et al. Research on top and bottom mixed blowing CO2 in converter steelmaking process. Steel Res Int, 2012, 83(1): 11 doi: 10.1002/srin.201100166
    [24] Li Z Z, Zhu R, Zhu Y Q. Effect of CO2 on material and energy in dephosphorization converters. Chin J Eng, 2016, 38(Sup 1): 232

    李智峥, 朱荣, 朱益强. CO2对脱磷转炉物料和能量的影响. 工程科学学报, 2016, 38(增刊1): 232
    [25] Li Z Z, Zhu R, Liu R Z, et al. Comparison of smelting effects by bottom blowing different gases. Iron Steel, 2016, 51(9): 40

    李智峥, 朱荣, 刘润藻, 等. 炼钢过程底吹气体的冶炼效果对比. 钢铁, 2016, 51(9):40
    [26] Li Z Z. Investigations on Fundamental Theory of CO2 Applied in Steelmaking Processes [Dissertation]. Beijing: University of Science and Technology Beijing, 2017

    李智峥. CO2应用于炼钢的基础理论研究[学位论文]. 北京: 北京科技大学, 2017
    [27] Wei G S, Zhu R, Wu X T, et al. Technological innovations of carbon dioxide injection in EAF-LF steelmaking. JOM, 2018, 70(6): 969 doi: 10.1007/s11837-018-2814-3
    [28] Wang X L. Research on Steelmaking Technology of 300 Ton Converter by Blowing Carbon Dioxide [Dissertation]. Beijing: University of Science and Technology Beijing, 2018

    王雪亮. 300吨转炉喷吹CO2炼钢工艺技术研究[学位论文]. 北京: 北京科技大学, 2018
    [29] Wang Y, Zhao L, Otto A, et al. A review of post-combustion CO2 capture technologies from coal-fired power plants. Energy Procedia, 2017, 114: 650 doi: 10.1016/j.egypro.2017.03.1209
    [30] Guandalini G, Romano M C, Ho M, et al. A sequential approach for the economic evaluation of new CO2 capture technologies for power plants. Int J Greenh Gas Control, 2019, 84: 219 doi: 10.1016/j.ijggc.2019.03.006
    [31] Gardarsdottir S, de Lena E, Romano M, et al. Comparison of technologies for CO2 capture from cement production—part 2: Cost analysis. Energies, 2019, 12(3): 542 doi: 10.3390/en12030542
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  757
  • HTML全文浏览量:  516
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-23
  • 网络出版日期:  2021-10-29

目录

    /

    返回文章
    返回