Optimization of depth clarification device for beneficiation circulating water based on solid-liquid two-phase flow simulation
-
摘要: 部分选矿循环水中含一定量的高分散性悬浮颗粒,仅依靠简单浓缩沉降难以澄清,无法达到回用要求。针对这一难题,提出了一种选矿循环水固体悬浮物澄清装置。为优化装置的结构参数与运行参数,建立了选矿循环水深度澄清装置的二维物理模型,基于计算流体力学(CFD)的方法,选用Mixture和RNG k‒ε 模型对装置主要的结构参数与运行参数展开了数值模拟研究。研究发现适当降低水力循环区喷嘴长度,增加喉管与喷嘴管径比、颗粒沉降区开口尺寸、装置直径等结构,能够降低颗粒沉降区平均湍动能,由于湍动能为单位质量流体由于紊流脉动所具有的动能,故降低了颗粒沉降区流场的紊流程度,增加了水流的稳定性,提高了装置对悬浮颗粒的去除效果;同时发现降低入口流速、增加悬浮颗粒粒径有助于提高悬浮物的去除率,当进水流速为0.1 m·s‒1、经过混凝的悬浮颗粒形成粒径大于100 μm时,装置对选矿循环水中的悬浮颗粒去除效果显著。Abstract: Some beneficiation circulating water contains excess highly dispersed suspended particles, which are difficult to clarify only by simple concentration and sedimentation and cannot meet the requirements of reuse. To solve this problem, a clarification device was developed for removing the solid suspended matter from beneficiation circulating water, which consists of a hydraulic circulation area and a particle sedimentation area and integrating mixing, flocculation, and sedimentation. The flow field inside the gadget has a big influence on how well it works. The structural and operating parameters of the gadget were improved using the computational fluid dynamics approach to increase the device’s performance. A two-dimensional physical model of the deep clarification device for beneficiation circulating water was established. Numerical simulation research on its main structural parameters and operating parameters were conducted by using software Fluent and choosing the Mixture multiphase flow model and RNG k‒ε turbulence model. The effects of feed water nozzle length, throat to nozzle diameter ratio, sludge settling area opening size, and device diameter on the internal flow field were investigated. The average turbulent kinetic energy in the sludge settling zone can be reduced by reducing the length of the nozzle in the hydraulic circulation region, increasing the ratio of the throat to nozzle diameter and the opening size of the sludge settling area, and increasing the diameter of the device. Due to the fact that the turbulent kinetic energy is the kinetic energy of fluid produced by turbulent pulsation, the turbulent degree of the flow field in the sludge settling area is reduced, the effect of turbulent flow in the flow field on particle settling is weakened, and the removal effect of the device on suspended particles is improved. Simultaneously, it is found that at the same suspended solids concentration, reducing the inlet flow rate or increasing the suspended particle size helps to improve the removal rate of suspended solids. When the inlet flow rate is 0.1 m·s-1 and the coagulated suspended particles form particles with particle size more than 100 μm, the removal effect of slime particles in beneficiation circulating water is remarkable.
-
表 1 装置主要结构尺寸
Table 1. Main structure size of the device
mm H D h1 h2 h3 h4 h5 h6 d1 1220 500 155 450 440 60 190 95 25 d2 d3 L L1 L2 L3 L4 α β 50 380 70 80 15 60 50 140º 150º 表 2 装置运行参数对固体悬浮颗粒去除率的影响
Table 2. Effect of operation parameters on the removal rate of suspended solids
Inlet velocity/(m·s−1) Suspended particle size/µm η/% 0.1 60 25.11 75 30.26 100 60.98 120 80.36 0.12 60 18.3 75 24.13 100 45.96 120 70.46 0.15 60 17.16 75 18.41 100 26.11 120 46.18 0.18 60 11.54 75 15.6 100 23.6 120 29.1 -
参考文献
[1] Chen W M, Wu S M, Lei Y L, et al. China's water footprint by Province, and inter-provincial transfer of virtual water. Ecol Indic, 2017, 74: 321 doi: 10.1016/j.ecolind.2016.11.037 [2] Zhou S J, Deng R J, Hursthouse A. Risk assessment of potentially toxic elements pollution from mineral processing steps at xikuangshan antimony plant, Hunan, China. Processes, 2019, 8(1): 29 doi: 10.3390/pr8010029 [3] Yang X L, Bu X N, Xie G Y, et al. A comparative study on the influence of mono, di, and trivalent cations on the chalcopyrite and pyrite flotation. J Mater Res Technol, 2021, 11: 1112 doi: 10.1016/j.jmrt.2021.01.086 [4] Bicak O, Ozturk Y, Ozdemir E, et al. Modelling effects of dissolved ions in process water on flotation performance. Miner Eng, 2018, 128: 84 doi: 10.1016/j.mineng.2018.08.031 [5] Castillo C, Ihle C F, Jeldres R I. Chemometric optimisation of a copper sulphide tailings flocculation process in the presence of clays. Minerals, 2019, 9(10): 582 doi: 10.3390/min9100582 [6] Chen Y F, Fan R, An D F, et al. Water softening by induced crystallization in fluidized bed. J Environ Sci, 2016, 50: 109 doi: 10.1016/j.jes.2016.08.014 [7] Zubkova O, Alexeev A, Polyanskiy A, et al. Complex processing of saponite waste from a diamond-mining enterprise. Appl Sci, 2021, 11(14): 6615 doi: 10.3390/app11146615 [8] Liang G Q, Zhao Q, Liu B, et al. Treatment and reuse of process water with high suspended solids in low-grade iron ore dressing. J Clean Prod, 2021, 278: 123493 doi: 10.1016/j.jclepro.2020.123493 [9] Xu S, Zhou X L, Liu X C, et al. Development process, classification and high efficiency modification status of the thickener. Met Mine, 2021(5): 167徐帅, 周兴龙, 刘肖楚, 等. 浓密机发展历程、分类及其高效化改进研究现状. 金属矿山, 2021(5):167 [10] Yang B D, Xie J Y, Li P. Research on mechanism of high efficiency thickener. Nonferrous Met (Miner Process Sect) , 2011(5): 38杨保东, 谢纪元, 李鹏. 高效浓密机机理研究. 有色金属(选矿部分), 2011(5):38 [11] Chen Q L, Li C J, Yang Y. Analysis on technical characteristics of ϕ53 m center drive automatic rake lifting high efficiency thickener. Mod Min, 2009, 25(6): 130 doi: 10.3969/j.issn.1674-6082.2009.06.048陈庆来, 李从军, 杨勇. ϕ53 m中心传动自动提耙高效浓缩机技术特点分析. 现代矿业, 2009, 25(6):130 doi: 10.3969/j.issn.1674-6082.2009.06.048 [12] Xie D D, Tong X, Xie X, et al. The application and development of thickener in mineral processing technology. Conserv Util Miner Resour, 2015(2): 73谢丹丹, 童雄, 谢贤, 等. 浓密机在选矿中的应用现状及研究进展. 矿产保护与利用, 2015(2):73 [13] Xu Y R, Ban X J, Wang X K, et al. Simulations of silicone oil filling for use in retinal detachment surgery. Chin J Eng, 2021, 43(9): 1233徐衍睿, 班晓娟, 王笑琨, 等. 面向视网膜脱离手术的硅油填充模拟. 工程科学学报, 2021, 43(9):1233 [14] Cui Y, Ravnik J, Steinmann P, et al. Settling characteristics of nonspherical porous sludge flocs with nonhomogeneous mass distribution. Water Res, 2019, 158: 159 doi: 10.1016/j.watres.2019.04.017 [15] Gao H W, Stenstrom M K. Development and applications in computational fluid dynamics modeling for secondary settling tanks over the last three decades: A review. Water Environ Res, 2020, 92(6): 796 doi: 10.1002/wer.1279 [16] Shah M T, Parmar H B, Rhyne L D, et al. A novel settling tank for produced water treatment: CFD simulations and PIV experiments. J Petroleum Sci Eng, 2019, 182: 106352 doi: 10.1016/j.petrol.2019.106352 [17] Yao J J, Song L L, Liu C. Numerical simulation and structural optimization of water distribution channel between the flocculation tank and sedimentation tank with inclined plate settler. J Water Resour Water Eng, 2020, 31(5): 120姚娟娟, 宋莉莉, 刘存. 斜板沉淀池前配水渠的数值模拟及结构优化. 水资源与水工程学报, 2020, 31(5):120 [18] Wei W L, Hu J J, Wang C Z, et al. Numerical simulation for the influence of outlet location on the hydraulic characteristic in a radical settling tank. Chin J Appl Mech, 2021, 38(2): 670魏文礼, 胡嘉冀, 王长洲, 等. 辐流式沉淀池出口位置优化数值模拟研究. 应用力学学报, 2021, 38(2):670 [19] Lan B, Xu J, Liu Z C, et al. Simulation of scale-up effect of particle residence time distribution characteristics in continuously operated dense-phase fluidized beds. Ciesc J, 2021, 72(1): 521兰斌, 徐骥, 刘志成, 等. 连续操作密相流化床颗粒停留时间分布特性模拟放大研究. 化工学报, 2021, 72(1):521 [20] Liu Y L, Zhang P, Wei W L, et al. Numerical simulation of mechanical property of solid-liquid two-phase turbulent flow in a secondary sedimentation tank of radial flow. J Water Resour Water Eng, 2013, 24(4): 25刘玉玲, 张沛, 魏文礼, 等. 辐流式沉淀池液固两相流力学特性三维数值模拟. 水资源与水工程学报, 2013, 24(4):25 [21] Yu Q H, Mei Z Y, Bai M Q, et al. Cooling performance improvement of impingement hybrid synthetic jets in a confined space with the aid of a fluid diode. Appl Therm Eng, 2019, 157: 113749 doi: 10.1016/j.applthermaleng.2019.113749 [22] Behrangi F, Banihashemi M A, Namin M M, et al. A new approach to solve mixture multi-phase flow model using time splitting projection method. Prog Comput Fluid Dyn Int J, 2019, 19(3): 160 doi: 10.1504/PCFD.2019.099595 [23] Hnaien N, Marzouk S, Aissia H B, et al. Numerical investigation of velocity ratio effect in combined wall and offset jet flows. J Hydrodyn, 2018, 30(6): 1105 doi: 10.1007/s42241-018-0136-0 [24] Siswantara A I, Budiarso, Darmawan S. Investigation of inverse-turbulent-Prandtl number with four RNG k‒ε turbulence models on compressor discharge pipe of bioenergy micro gas turbine. Appl Mech Mater, 2016, 819: 392 doi: 10.4028/www.scientific.net/AMM.819.392 [25] Tarpagkou R, Pantokratoras A. The influence of lamellar settler in sedimentation tanks for potable water treatment—A computational fluid dynamic study. Powder Technol, 2014, 268: 139 doi: 10.1016/j.powtec.2014.08.030 [26] Tan L X, Tang M, Xu C H. Three-dimensional numerical simulations of the effects of slanting plates in vertical flow desilting tank. J Hydroelectr Eng, 2018, 37(10): 86 doi: 10.11660/slfdxb.20181010谭立新, 唐敏, 徐长贺. 斜板对竖流式沉淀池影响的三维数值模拟. 水力发电学报, 2018, 37(10):86 doi: 10.11660/slfdxb.20181010 [27] Shahrokhi M, Rostami F, Md Said M A, et al. The effect of number of baffles on the improvement efficiency of primary sedimentation tanks. Appl Math Model, 2012, 36(8): 3725 doi: 10.1016/j.apm.2011.11.001 [28] Goula A M, Kostoglou M, Karapantsios T D, et al. A CFD methodology for the design of sedimentation tanks in potable water treatment: Case study: The influence of a feed flow control baffle. Chem Eng J, 2008, 140(1-3): 110 doi: 10.1016/j.cej.2007.09.022 -