• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向钢铁烧结烟气NOx吸附净化的吸附剂特性

刘应书 吴晓永 李子宜 杨雄 刘文海 侯环宇 邢奕 李金娟

刘应书, 吴晓永, 李子宜, 杨雄, 刘文海, 侯环宇, 邢奕, 李金娟. 面向钢铁烧结烟气NOx吸附净化的吸附剂特性[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.11.01.001
引用本文: 刘应书, 吴晓永, 李子宜, 杨雄, 刘文海, 侯环宇, 邢奕, 李金娟. 面向钢铁烧结烟气NOx吸附净化的吸附剂特性[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.11.01.001
LIU Ying-shu, WU Xiao-yong, LI Zi-yi, YANG Xiong, LIU Wen-hai, HOU Huan-yu, XING Yi, LI Jin-juan. Adsorbents for the adsorption purification of NOx in the ore-sintering flue gas[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.11.01.001
Citation: LIU Ying-shu, WU Xiao-yong, LI Zi-yi, YANG Xiong, LIU Wen-hai, HOU Huan-yu, XING Yi, LI Jin-juan. Adsorbents for the adsorption purification of NOx in the ore-sintering flue gas[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.11.01.001

面向钢铁烧结烟气NOx吸附净化的吸附剂特性

doi: 10.13374/j.issn2095-9389.2021.11.01.001
基金项目: 国家自然科学基金资助项目(21808012);“十三五”国家重点研发专项资助项目(2017YFC0210302);贵州省科技支撑计划资助项目(黔科合支撑[2021]一般 497)
详细信息
    通讯作者:

    E-mail: ziyili@ustb.edu.cn

  • 中图分类号: X701.7;TF09

Adsorbents for the adsorption purification of NOx in the ore-sintering flue gas

More Information
  • 摘要: 吸附法是有望同时实现烟气NOx超低排放深度净化与资源化的关键技术,高效NOx吸附剂是其核心关键,然而目前针对满足应用需求的NOx吸附剂仍缺乏系统认识。本文基于烟气NOx净化效率及材料热稳定性实际需求,分析挑选了沸石、金属氧化物、硅铝胶等代表性吸附剂,研究了NOx在各吸附剂上的吸附穿透、吸附量、程序升温脱附等关键特性,结合吸附剂孔道特性对比发现,中低硅H-ZSM-5沸石兼具较高NOx净化深度、NOx吸附量、较低脱附温度且可获得更易于资源化的NOx解吸气,因而可作为优选NOx吸附剂。进一步地,随着吸附温度升高,硅铝比(w(SiO2)/w(Al2O3) )为25、38的H-ZSM-5的NOx吸附量均降低,其中低硅H-ZSM-5的NOx吸附量较高,但吸附传质系数较低。本文可为烟气NOx吸附净化的效益环保技术提供指导。

     

  • 图  1  NOx吸附实验系统

    Figure  1.  NOx adsorption experimental system

    图  2  孔径分布及87 K下Ar的吸附等温线

    Figure  2.  Pore size distributions and adsorption isotherms of Ar at 87 K

    图  3  各吸附剂的NOx穿透曲线(398 K)

    Figure  3.  NOx breakthrough curves on adsorbents (398 K)

    图  4  H-ZSM-5_25在有氧和无氧条件下的NOx穿透曲线(298 K)

    Figure  4.  NOx breakthrough curves of H-ZSM-5_25 with and without oxygen (298 K)

    图  5  NOx在各吸附剂的程序性升温脱附(TPD)曲线(a)和NO与NO2含量图(b)

    Figure  5.  Temperature-programmed desorption curves of NOx (a) and amounts of NO and NO2 (b) in the desorbed gas on each adsorbent

    图  6  不同硅铝比的H-ZSM-5在不同温度下的穿透曲线

    Figure  6.  Breakthrough curves of H-ZSM-5 at different temperatures for different Si–Al ratios

    图  7  H-ZSM-5_25、H-ZSM-5_38的NOx吸附量随温度的变化曲线

    Figure  7.  Variation curves of the NOx absorption capacity with temperature for H-ZSM-5_25 and H-ZSM-5_38

    图  8  H-ZSM-5_25、H-ZSM-5_38的吸附速率曲线(298 K)及LDF模型拟合曲线

    Figure  8.  Adsorption uptake curves (298 K) of H-ZSM-5_25 and H-ZSM-5_38 along with linear driving force model fitting curves

    表  1  吸附剂的物理参数及NOx吸附量

    Table  1.   Physical parameters and NOx adsorption capacity of adsorbents

    AdsorbentsBrunauer–Emmett–Teller surface area/(m2·g–1)Pore volume/
    (cm3·g–1)
    Primary micropore channel/nmNOx adsorption capacity/(mmol·g–1)
    H-ZSM-5_253530.320.680.206
    H-ZSM-5_383370.300.720.127
    H-ZSM-5_1983970.430.720.013
    13X3930.481.000.181
    NaY5370.381.150.027
    Si–Al gel4630.431.170.016
    Fe–Mn–Ce990.094.580.200
    下载: 导出CSV

    表  2  LDF模型拟合参数

    Table  2.   Linear driving force model fitting parameters

    AdsorbentsR2kiC
    H-ZSM-5_250.998–1.14 × 10–4± 3.79 × 10–80.08 ± 5.83 × 10–4
    H-ZSM-5_380.995–2.19 × 10–4 ± 1.32 × 10–70.05 ± 0.01
    下载: 导出CSV
  • [1] Shelef M. Selective catalytic reduction of NOx with N-free reductants. Chem Rev, 1995, 95(1): 209 doi: 10.1021/cr00033a008
    [2] Pârvulescu V I, Grange P, Delmon B. Catalytic removal of NO. Catal Today, 1998, 46(4): 233 doi: 10.1016/S0920-5861(98)00399-X
    [3] Ministry of Ecology and Environment of the People's Republic of China. Opinions on promoting the implementation of ultra-low emissions in the steel industry [EB/OL]. Government Information Disclosure (2019-04-28) [2021-11-01].https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/201904/t20190429_701463.html

    中华人民共和国生态环境部. 关于推进实施钢铁行业超低排放的意见[EB/OL]. 政府信息公开 (2019-04-28) [2021-11-01].https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/201904/t20190429_701463.html
    [4] Ministry of Ecology and Environment of the People's Republic of China. HJ 2053—2018 Technical Specifications for Flue Gas Ultra-low Emission Engineering of Coal-fired Power Plant. Beijing: China Environmental Press, 2018

    中华人民共和国生态环境部. HJ 2053—2018燃煤电厂超低排放烟气治理工程技术规范. 北京: 中国环境科学出版社, 2018
    [5] Meng Z H, Wang C Y, Wang X R, et al. Simultaneous removal of SO2 and NOx from flue gas using (NH4)2S2O3/steel slag slurry combined with ozone oxidation. Fuel, 2019, 255: 115760 doi: 10.1016/j.fuel.2019.115760
    [6] Paulauskas, Jõgi, Striūgas, et al. Application of non-thermal plasma for NOx reduction in the flue gases. Energies, 2019, 12(20): 3955 doi: 10.3390/en12203955
    [7] Zhang Q, He S L, Zhang Z, et al. Low-temperature selective catalytic reduction of NOz and anti-toxicity of MnOx–FeOy/TiO2–ZrO2–CeO2. Chin J Eng, 2020, 42(3): 321

    张晴, 贺拴玲, 张铮, 等. MnOx–FeOy/TiO2–ZrO2–CeO2低温选择性催化还原NOz和抗毒性研究. 工程科学学报, 2020, 42(3):321
    [8] Ding L, Qian L X, Yang T, et al. Influence of Zn in the iron ore sintering flue gas on the removal of NOx and dioxins by V2O5–WO3/TiO2 catalyst. Chin J Eng, 2021, 43(8): 1125

    丁龙, 钱立新, 杨涛, 等. 烧结烟气中Zn对V2O5–WO3/TiO2催化剂脱除NOx和二噁英性能的影响. 工程科学学报, 2021, 43(8):1125
    [9] Xing Y, Zhang W B, Su W, et al. Research of ultra-low emission technologies of the iron and steel industry in China. Chin J Eng, 2021, 43(1): 1

    邢奕, 张文伯, 苏伟, 等. 中国钢铁行业超低排放之路. 工程科学学报, 2021, 43(1):1
    [10] Yang R T. Gas Separation by Adsorption Processes. London: World Scientific, 1997
    [11] Ren F P, Tian X Z, Ren Y L, et al. Nitrogen dioxide-catalyzed aerobic oxidation of benzyl alcohols under cocatalyst and acid-free conditions. Catal Commun, 2017, 101: 98 doi: 10.1016/j.catcom.2017.08.003
    [12] Kong Y, Cha C Y. NOx adsorption on char in presence of oxygen and moisture. Carbon, 1996, 34(8): 1027 doi: 10.1016/0008-6223(96)00050-4
    [13] Hu M M, Zhang Z Q, Atkinson J D, et al. Porous materials for steady-state NO conversion: Comparisons of activated carbon fiber cloths, zeolites and metal-organic frameworks. Chem Eng J, 2019, 360: 89 doi: 10.1016/j.cej.2018.11.102
    [14] Machida M, Yoshii A, Kijima T. Temperature swing adsorption of NOx over ZrO2-based oxides. Int J Inorg Mater, 2000, 2(5): 413 doi: 10.1016/S1466-6049(00)00062-3
    [15] Xing N, Wang X P, Yu Q, et al. Adsorption performance of zeolites for NO and NO2. Chin J Catal, 2007, 28(3): 205 doi: 10.3321/j.issn:0253-9837.2007.03.006

    邢娜, 王新平, 于青, 等. 分子筛对NO和NO2的吸附性能. 催化学报, 2007, 28(3):205 doi: 10.3321/j.issn:0253-9837.2007.03.006
    [16] An J L, Wang Y S, Li X, et al. Analysis of the relationship between NO, NO2 and O3 concentrations in Beijing. Environ Sci, 2007, 28(4): 4706

    安俊琳, 王跃思, 李昕, 等. 北京大气中NO、NO2和O3浓度变化的相关性分析. 环境科学, 2007, 28(4):4706
    [17] Brown C E, Hall P G. Physical adsorption of nitric oxide on graphite and silica and adsorption of gases on nitric oxide preadsorbed on carbon. J Colloid Interface Sci, 1973, 42(2): 334 doi: 10.1016/0021-9797(73)90297-X
    [18] Brown C E, Hall P G. Physical adsorption of nitric oxide on metal oxides. Surf Sci, 1973, 36(2): 569 doi: 10.1016/0039-6028(73)90403-2
    [19] Deng H, Yi H H, Tang X L, et al. Adsorption equilibrium for sulfur dioxide, nitric oxide, carbon dioxide, nitrogen on 13X and 5A zeolites. Chem Eng J, 2012, 188: 77 doi: 10.1016/j.cej.2012.02.026
    [20] Penkova A, Hadjiivanov K, Mihaylov M, et al. FTIR spectroscopic study of low temperature NO adsorption and NO + O2 coadsorption on H-ZSM-5. Langmuir, 2004, 20(13): 5425 doi: 10.1021/la0496643
    [21] Szanyi J, Hun Kwak J, Moline R A, et al. The adsorption of NO2 and the NO+O2 reaction on Na–Y, FAU: An in situ FTIR investigation. Phys Chem Chem Phys, 2003, 5(18): 4045 doi: 10.1039/B306585E
    [22] Liu Y S, Sun N Q, Li Z Y, et al. Recovery of high-purity NO2 and SO2 products from iron-ore sintering flue gas by distillation: Process design, optimization and analysis. Sep Purif Technol, 2021, 264: 118308 doi: 10.1016/j.seppur.2021.118308
    [23] Ghouma I, Jeguirim M, Dorge S, et al. Activated carbon prepared by physical activation of olive stones for the removal of NO2 at ambient temperature. Comptes Rendus Chimie, 2015, 18(1): 63 doi: 10.1016/j.crci.2014.05.006
    [24] Liu H R. Variation of spontaneous combustion point of activated carbon with different oxidation degree. Fire Sci Technol, 2013, 32(4): 367 doi: 10.3969/j.issn.1009-0029.2013.04.006

    刘函如. 不同氧化程度的活性炭自燃点变化规律研究. 消防科学与技术, 2013, 32(4):367 doi: 10.3969/j.issn.1009-0029.2013.04.006
    [25] Silas K, Wan Azlina Wan Ab Karim Ghani, Choong T S Y, et al. Carbonaceous materials modified catalysts for simultaneous SO2/NOx removal from flue gas: A review. Catal Rev, 2019, 61(1): 134 doi: 10.1080/01614940.2018.1482641
    [26] Jiang H X, Wang Q Y, Wang H Q, et al. MOF-74 as an efficient catalyst for the low-temperature selective catalytic reduction of NOx with NH3. ACS Appl Mater Interfaces, 2016, 8(40): 26817 doi: 10.1021/acsami.6b08851
    [27] Bauer S, Serre C, Devic T, et al. High-throughput assisted rationalization of the formation of metal organic frameworks in the iron(III) aminoterephthalate solvothermal system. Inorg Chem, 2008, 47(17): 7568 doi: 10.1021/ic800538r
    [28] Zhang Z Q, Atkinson J D, Jiang B Q, et al. NO oxidation by microporous zeolites: Isolating the impact of pore structure to predict NO conversion. Appl Catal B Environ, 2015, 163: 573 doi: 10.1016/j.apcatb.2014.06.044
    [29] Liu Y S, You Y, Li Z Y, et al. NOx removal with efficient recycling of NO2 from iron-ore sintering flue gas: A novel cyclic adsorption process. J Hazard Mater, 2021, 407: 124380 doi: 10.1016/j.jhazmat.2020.124380
    [30] You Y, Liu Y S, Yang X, et al. A new adsorption process for flue gas NOx purification and recovery. CIESC J, 2021, 72(4): 2132

    游洋, 刘应书, 杨雄, 等. 面向烟气NOx净化与回收的新型吸附工艺. 化工学报, 2021, 72(4):2132
    [31] Huang H Y, Yang R T. Removal of NO by reversible adsorption on Fe−Mn based transition metal oxides. Langmuir, 2001, 17(16): 4997 doi: 10.1021/la0102657
    [32] Yang X, Liu Y S, Li Z Y, et al. Vacuum exhaust process in pilot-scale vacuum pressure swing adsorption for coal mine ventilation air methane enrichment. Energies, 2018, 11(5): 1030 doi: 10.3390/en11051030
    [33] Li Z Y, Liu Y S, Yang X, et al. Desorption kinetics of naphthalene and acenaphthene over two activated carbons via thermogravimetric analysis. Energy Fuels, 2015, 29(8): 5303 doi: 10.1021/acs.energyfuels.5b01159
    [34] Li G, Xiao P, Zhang J, et al. The role of water on postcombustion CO2 capture by vacuum swing adsorption: Bed layering and purge to feed ratio. Aiche J, 2014, 60(2): 673 doi: 10.1002/aic.14281
    [35] Li Z Y, Liu Y S, Wang H H, et al. A numerical modelling study of SO2 adsorption on activated carbons with new rate equations. Chem Eng J, 2018, 353: 858 doi: 10.1016/j.cej.2018.07.119
    [36] Zhu X Q, Liu Y S, Yang X, et al. Study of a novel rapid vacuum pressure swing adsorption process with intermediate gas pressurization for producing oxygen. Adsorption, 2017, 23(1): 175 doi: 10.1007/s10450-016-9843-4
    [37] Mendes A M M, Costa C A V, Rodrigues A E. Linear driving force approximation for isothermal non-isobaric diffusion/convection with binary Langmuir adsorption. Gas Sep Purif, 1995, 9(4): 259 doi: 10.1016/0950-4214(95)00008-Y
    [38] Zhang B W, Tang X L, Yi H H, et al. Study on NO adsorptive removal on modified activated carbon. New Chem Mater, 2015, 43(7): 111

    张波文, 唐晓龙, 易红宏, 等. 改性活性炭吸附去除NO实验研究. 化工新型材料, 2015, 43(7):111
    [39] Zhang J Q, Liu Y Y, Fan W B, et al. Adsorption and temperature programmed desorption of NO, NO+O2, NO2 and NO + NO2 over CoH-ZSM-5. Fuel, 2007, 86(10-11): 1577 doi: 10.1016/j.fuel.2006.11.011
    [40] Loiland J A, Lobo R F. Low temperature catalytic NO oxidation over microporous materials. J Catal, 2014, 311: 412 doi: 10.1016/j.jcat.2013.12.013
    [41] Li R, Wu B, Chen Y Q, et al. Influence of polyethylene glycol on the catalytic activity of MnFeOx for NO oxidation at low-temperature. Catal Lett, 2019, 149(7): 1864 doi: 10.1007/s10562-019-02793-9
    [42] Wang Z, Guo M, Mu X Y, et al. Highly sensitive capacitive gas sensing at ionic liquid-electrode interfaces. Anal Chem, 2016, 88(3): 1959 doi: 10.1021/acs.analchem.5b04677
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  29
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-01
  • 网络出版日期:  2022-02-22

目录

    /

    返回文章
    返回