Application of the fuzzy analytic hierarchy process in deep space exploration program optimization in China
-
摘要: 中国深空探测是复杂的系统工程,涉及领域多、技术难度大、经费需求高,目前方案优选方法是论证组论证和中介机构专家评估后形成,该方法论证周期长,不易快速做出科学决策。本文基于模糊层次分析模型,考虑技术、科学、经费等多指标多层次结构,建立系统指标评价模型。以中国探月工程中嫦娥四号任务方案为具体算例,综合专家判断和理论分析,建立各层次指标的判断矩阵,计算权重系数,进而实现总体方案的优选应用评价。结果表明,技术、科学和经费这三个因素相对于周期和效益更为重要。在4个备选方案中,由长征四号丙发射中继星,长征三号乙发射着陆器和巡视器组合体的方案,排序权值最大,因此该方案为最优方案,这也与实际情况一致。本研究可为我国后续各类深空探测方案制定提供快速及科学的理论支撑。Abstract: China’s deep space exploration program is a complex and systematic project involving many fields and having great technical difficulties and funding requirements. The current program optimization method was developed in response to the demonstration group’s demonstration and the expert evaluation of the intermediary agency. This method requires a long demonstration period and makes rapid scientific decisions difficult. The Analytic Hierarchy Process (AHP) and the Fuzzy Analytic Hierarchy Process (FAHP) are both practical multi-factor and multi-objective decision-making methods that are widely used in many fields. To solve the problem of AHP being difficult to verify and judge for consistency, the concept of a fuzzy, consistent matrix was introduced, followed by the establishment of the FAHP. The introduction of the FAHP into the optimization of the overall scheme for deep space exploration benefits both the selection of the optimal overall scheme at the national level, which enables all relevant parties to reach consensus as soon as possible, and the national scientific decision-making process. This study established a systematic index evaluation model based on the FAHP model, considering the multi-index and multi-level structure of technology, science, and funding, among other things. By combining expert judgment and theoretical analysis, a judgment matrix of indicators at various levels was established and weight coefficients were derived for the Chang’e-4 mission plan in China’s lunar exploration project. Then, the overall plan was evaluated for optimal applicability. The results show that the three factors of technology, science, and funding are more important than time and benefit. Advancement and reliability are the primary control factors under the technical criteria. Scientific value is the major controlling factor when it comes to scientific criteria. The development cost is the primary constraint on the funding criterion. Planning compliance and planning feasibility are the primary controlling factors under the cycle criterion. Scientific output and technological promotion are the major controlling factors under the criterion of benefit. Among the four alternatives, the one in which the relay satellite is launched by the Long March 4C and the lander and rover are launched by the Long March 3B has the largest sorting weight. As a result, this solution is the optimal solution that is also consistent with the current situation. This research can help China provide rapid and scientifically sound support for various deep space exploration programs.
-
图 5 各方案对技术对应指标层各元素的权重. (a) 先进性; (b) 可靠性; (c) 资源需求; (d) 团队基础; (e) 体系规范; (f) 风险; (g) 综合
Figure 5. Weights of each scheme to each element of the corresponding index layer of technology: (a) advancement; (b) reliability; (c) resource requirements; (d) team basis; (e) system specification; (f) risk; (g) synthesis
表 1 简单标度法
Table 1. Simple scale method
Scale Definition Explanation 0 Unimportant One element is less important than the other by comparison 0.5 Same The two elements are equally important in comparison 1 Important When two elements are compared, one element is more important than the other 表 2 嫦娥四号总体方案
Table 2. Overall plan for CE-4
Project Concrete content Project 1 It was launched on a Russian Soyuz rocket. The combination of lander and rover was launched on a CZ-3B carrier rocket. Project 2 The relay satellite will be launched by the CZ-2C +SM solid upper stage, while the CZ-3B will launch a combination of lander and rover. Project 3 The relay satellite will be launched by CZ-4C and the lander and rover will be launched by CZ-3B. Project 4 The Long March 5 will launch a relay satellite and a combination of lander and rover. 表 3 F-S优先关系矩阵
Table 3. F-S priority matrix
Factor S1 S2 S3 S4 S5 S1 0.5 0.5 0.5 1 1 S2 0.5 0.5 0.5 1 1 S3 0.5 0.5 0.5 1 1 S4 0 0 0 0.5 0.5 S5 0 0 0 0.5 0.5 表 4 S1-T优先关系矩阵
Table 4. S1-T priority matrix
Factor T1 T2 T3 T4 T5 T6 T1 0.5 0.5 1 1 1 1 T2 0.5 0.5 1 1 1 1 T3 0 0 0.5 0 0.5 0.5 T4 0 0 1 0.5 1 1 T5 0 0 0.5 0 0.5 0.5 T6 0 0 0.5 0 0.5 0.5 表 5 T1-P优先关系矩阵
Table 5. T1-P priority matrix
Factor P1 P2 P3 P4 P1 0.5 0 0 0 P2 1 0.5 0 0 P3 1 1 0.5 0 P4 1 1 1 0.5 -
参考文献
[1] Song H Q, Zhang J, Ni D D, et al. Investigation on in situ water ice recovery considering energy efficiency at the lunar south pole. Appl Energy, 2021, 298: 117136 doi: 10.1016/j.apenergy.2021.117136 [2] Song H Q, Zhang J, Sun Y Q, et al. Theoretical study on thermal release of helium-3 in lunar ilmenite. Minerals, 2021, 11(3): 319 doi: 10.3390/min11030319 [3] Chen D P. The Development History and Inspiration of Japanese Deep-Space Detector and Carrier [Dissertation]. Harbin: Harbin Institute of Technology, 2017陈东萍. 日本深空探测器与运载器发展历程及启示[学位论文]. 哈尔滨: 哈尔滨工业大学, 2017 [4] Song H Q, Du H C, Zhang J, et al. Release behavior research of in situ helium-3 resources extraction in moon under heating. Chin J Space Sci, 2021, 41(5): 787 doi: 10.11728/cjss2021.05.787宋洪庆, 杜恒畅, 张杰, 等. 月球氦-3资源的原位开采热释放行为研究. 空间科学学报, 2021, 41(5):787 doi: 10.11728/cjss2021.05.787 [5] Ye P J, Zou L Y, Wang D Y, et al. Development and prospect of Chinese deep space exploration. Space Int, 2018(10): 4 doi: 10.3969/j.issn.1009-2366.2018.10.002叶培建, 邹乐洋, 王大轶, 等. 中国深空探测领域发展及展望. 国际太空, 2018(10):4 doi: 10.3969/j.issn.1009-2366.2018.10.002 [6] Li C L, Wang C, Wei Y, et al. China's present and future lunar exploration program. Science, 2019, 365(6450): 238 doi: 10.1126/science.aax9908 [7] Lunine J. The impact of solar system exploration on our understanding of exoplanetary systems // American Astronomical Society Meeting Abstracts# 235. Honolulu, 2020, 235: 356.03 [8] Wu J. Introduction to Space Science. Singapore: Springer, 2021 [9] Qiu J W, Wang Q, Ma J N. Deep space exploration technology(Invited). Infrared Laser Eng, 2020, 49(5): 9邱家稳, 王强, 马继楠. 深空探测技术(特约). 红外与激光工程, 2020, 49(5):9 [10] Zhou C Y, Jia Y Z, Liu J Z, et al. Scientific objectives and payloads of the lunar sample return mission—Chang’E-5. Adv Space Res, 2022, 69(1): 823 doi: 10.1016/j.asr.2021.09.001 [11] Che L, Wang B, Zhao P F, et al. Research progress in the in situ utilization of lunar soil. Chin J Eng, 2021, 43(11): 1433车浪, 王彬, 赵鹏飞, 等. 月壤原位利用技术研究进展. 工程科学学报, 2021, 43(11):1433 [12] Ouyang Z Y, Li C L, Zou Y L, et al. The primary science result from the Chang’E-1 probe. Sci Sin (Terrae) , 2010, 40(3): 261 doi: 10.1360/zd2010-40-3-261欧阳自远, 李春来, 邹永廖, 等. 绕月探测工程的初步科学成果. 中国科学:地球科学, 2010, 40(3):261 doi: 10.1360/zd2010-40-3-261 [13] Ye P J, Huang J C, Sun Z Z, et al. The process and experience in the development of Chinese lunar probe. Sci Sin (Technol) , 2014, 44(6): 543 doi: 10.1360/N092014-00150叶培建, 黄江川, 孙泽洲, 等. 中国月球探测器发展历程和经验初探. 中国科学:技术科学, 2014, 44(6):543 doi: 10.1360/N092014-00150 [14] Ye P J, Huang J C, Zhang T X, et al. Technological achievements of Chang 'E-2 satellite and prospects of China's deep space exploration. Sci Sin (Technol) , 2013, 43(5): 467 doi: 10.1360/092013-229叶培建, 黄江川, 张廷新, 等. 嫦娥二号卫星技术成就与中国深空探测展望. 中国科学:技术科学, 2013, 43(5):467 doi: 10.1360/092013-229 [15] Sun Z Z, Zhang T X, Zhang H, et al. The technical design and achievements of Chang'E-3 probe. Sci Sin (Technol) , 2014, 44(4): 331 doi: 10.1360/092014-37孙泽洲, 张廷新, 张熇, 等. 嫦娥三号探测器的技术设计与成就. 中国科学:技术科学, 2014, 44(4):331 doi: 10.1360/092014-37 [16] Wu W R, Yu D Y. Key technologies in the Chang'e-3 soft-landing project. J Deep Space Explor, 2014, 1(2): 105吴伟仁, 于登云. “嫦娥3号”月球软着陆工程中的关键技术. 深空探测学报, 2014, 1(2):105 [17] Wu W R, Wang Q, Tang Y H, et al. Design of Chang'e-4 lunar farside soft-landing mission. J Deep Space Explor, 2017, 4(2): 111吴伟仁, 王琼, 唐玉华, 等. “嫦娥4号”月球背面软着陆任务设计. 深空探测学报, 2017, 4(2):111 [18] Ye P J, Sun Z Z, Zhang H, et al. Mission design of Chang'e-4 probe system. Sci Sin (Technol) , 2019, 49(2): 124 doi: 10.1360/N092018-00400叶培建, 孙泽洲, 张熇, 等. 嫦娥四号探测器系统任务设计. 中国科学:技术科学, 2019, 49(2):124 doi: 10.1360/N092018-00400 [19] Li Q L, Zhou Q, Liu Y, et al. Two-billion-year-old volcanism on the moon from Chang’e-5 basalts. Nature, 2021, 600(7887): 54 doi: 10.1038/s41586-021-04100-2 [20] Wang G, Shuai T, Chen J Y, et al. Research on comprehensive application and decision of aerospace information based on deep reinforcement learning. Radio Eng, 2019, 49(7): 564 doi: 10.3969/j.issn.1003-3106.2019.07.003王港, 帅通, 陈金勇, 等. 基于深度强化学习的航天信息综合应用与决策研究. 无线电工程, 2019, 49(7):564 doi: 10.3969/j.issn.1003-3106.2019.07.003 [21] Ding R, Yang R, Yang P, et al. The application of improved adjusting weights algorithm in space engineering project decision. J Syst Sci Math Sci, 2016, 36(12): 2234 doi: 10.12341/jssms13003丁若, 杨然, 杨鹏, 等. 航天工程方案决策中的改进专家权重调整算法及应用. 系统科学与数学, 2016, 36(12):2234 doi: 10.12341/jssms13003 [22] Zhang J J. Fuzzy analytical hierarchy process. Fuzzy Syst Math, 2000, 14(2): 80 doi: 10.3969/j.issn.1001-7402.2000.02.016张吉军. 模糊层次分析法(FAHP). 模糊系统与数学, 2000, 14(2):80 doi: 10.3969/j.issn.1001-7402.2000.02.016 [23] Zhu Y L. Decision making of space development objective by using analytic hierarchy process. Chin Space Sci Technol, 1989, 9(2): 38朱毅麟. 用层次分析法实现航天发展目标决策. 中国空间科学技术, 1989, 9(2):38 [24] Higgins M, Benaroya H. Utilizing the analytical hierarchy process to determine the optimal lunar habitat configuration. Acta Astronaut, 2020, 173: 145 doi: 10.1016/j.actaastro.2020.04.012 [25] Yan Z L, Zhou J L, Gong S Y. Use of theory of fuzzy selection in the safety risk management and decision-making of the space system. Syst Enging Theory Methodol Appl, 2000, 9(2): 131颜兆林, 周经伦, 龚时雨. 模糊优选技术在航天安全风险管理和决策中的应用. 系统工程理论方法应用, 2000, 9(2):131 [26] Ou S Y, Qin D G, Zhang Y. Optimum decision making of satellite tracking and control schemes based on FAHP. Mod Def Technol, 2012, 40(3): 161 doi: 10.3969/j.issn.1009-086x.2012.03.032欧士扬, 秦大国, 张杨. 基于模糊层次分析法的航天测控方案优选决策. 现代防御技术, 2012, 40(3):161 doi: 10.3969/j.issn.1009-086x.2012.03.032 [27] Zhou Q X. The discussion of multiobject fuzzy decision model and its application in manned spaceflight. Chin Space Sci Technol, 1998, 18(1): 66周前祥. 多目标模糊决策模型及其在载人航天中应用的探讨. 中国空间科学技术, 1998, 18(1):66 [28] Yang X Q, Zhang S C. Manned space engineering project based on fuzzy analytic hierarchy process-particle swarm optimization research on identification of important processes. Sci Technol Manag Res, 2019, 39(24): 217 doi: 10.3969/j.issn.1000-7695.2019.24.029杨新庆, 张善从. 基于模糊层次分析法—粒子群算法的载人航天工程项目重要工序识别研究. 科技管理研究, 2019, 39(24):217 doi: 10.3969/j.issn.1000-7695.2019.24.029 [29] Saaty T L. The Analytic Hierarchy Process. New York: McGraw Hill, 1980 [30] Vaidya O S, Kumar S. Analytic hierarchy process: An overview of applications. Eur J Oper Res, 2006, 169(1): 1 doi: 10.1016/j.ejor.2004.04.028 [31] Suykens J, Vandewalle J. Least squares support vector machine classifiers. Neural Process Lett, 1999, 9(3): 293 doi: 10.1023/A:1018628609742 [32] Zhou Y M, Li W H. Enhanced FAHP and its application to task scheme evaluation. Comput Eng Appl, 2008, 44(5): 212 -