• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

废石全尾砂高浓度充填料浆的均质化模型

杨晓炳 尹升华 郝硕 杨航

杨晓炳, 尹升华, 郝硕, 杨航. 废石全尾砂高浓度充填料浆的均质化模型[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.12.18.004
引用本文: 杨晓炳, 尹升华, 郝硕, 杨航. 废石全尾砂高浓度充填料浆的均质化模型[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2021.12.18.004
YANG Xiao-bing, YIN Sheng-hua, HAO Shuo, YANG Hang. Homogenization mathematical model of the cemented filling slurry with crushing waste rock and whole tailings[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.12.18.004
Citation: YANG Xiao-bing, YIN Sheng-hua, HAO Shuo, YANG Hang. Homogenization mathematical model of the cemented filling slurry with crushing waste rock and whole tailings[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2021.12.18.004

废石全尾砂高浓度充填料浆的均质化模型

doi: 10.13374/j.issn2095-9389.2021.12.18.004
基金项目: 中央高校基本科研业务费专项资金资助项目(FRF-TP-20-039A1);矿物加工科学与技术国家重点实验室开放基金资助项目(BGRIMM-KJSKL-2021-18);中国博士后科学基金资助项目(2021M690363)
详细信息
    通讯作者:

    E-mail: ustxsh@163.com

  • 中图分类号: TD853.34

Homogenization mathematical model of the cemented filling slurry with crushing waste rock and whole tailings

More Information
  • 摘要: 针对废石全尾砂高浓度充填料浆管输易堵管及充填体分层的问题,开展减水剂、搅拌参数等对料浆均质性影响的试验及料浆均质化定量表征的研究。首先基于泌水−坍落度试验确定了聚羧酸系(PC)减水剂及其掺量区间,获得了PC作用下的料浆流变参数及充填体强度的变化规律。其次,通过图像处理技术分析搅拌料浆表面特征,明确了PC作用下搅拌时长及废尾比(废石与尾矿质量比)对料浆均质化的影响规律。最后,构建了废石全尾砂高浓度充填料浆的均质化模型。结果表明,PC作用能够降低料浆的屈服应力与塑性黏度系数,改善料浆流动性。合理掺量可以提升充填体的早期强度,但对28 d强度有削弱。料浆表面图像信息熵越高、黑色像素点占比越小,料浆均质化程度越高,且均质化程度随搅拌时长、废尾比的增大呈先增大后减小趋势。当PC的质量分数为0.26%~0.5%时,料浆均质化程度高,PC质量分数为0.5%时料浆屈服应力和塑性黏度达到最小值,分别为202.25 Pa和0.79 Pa·s。

     

  • 图  1  粒径特征分布曲线. (a)废石; (b)尾砂

    Figure  1.  Characteristic distribution curve of particle size: (a)waste rock; (b)tailings

    图  2  减水剂作用下料浆泌水−坍落变化情况

    Figure  2.  Changes of slurry bleeding and slump under the action of water-reducing agent

    图  3  PC作用下料浆的剪切应力−剪切速率曲线

    Figure  3.  Shear stress-shear rate curve of slurry under the action of PC

    图  4  PC掺量与屈服应力、塑性黏度的回归结果

    Figure  4.  Regression results of PC content, yield stress and plastic viscosity

    图  5  充填体抗压强度曲线

    Figure  5.  Characterization curve of compressive strength of filling body

    图  6  充填体抗压强度与影响因素关系曲面

    Figure  6.  Relationship between compressive strength of filling body and factors

    图  7  不同PC质量分数条件下的搅拌试验结果. (a)ω=0;(b)ω=0.50%

    Figure  7.  Stirring test result with different ω: (a)ω=0;(b)ω=0.50%

    图  8  搅拌时间与废尾比交互作用下表面图像信息熵变化. (a) ω=0(R2=0.9951);(b) ω=0.5%(R2=0.9333)

    Figure  8.  Change of surface image information entropy under the interaction of mixing time and waste tail ratio:(a) ω=0(R2=0.9951) ; (b) ω=0.5%(R2=0.9333)

    图  9  黑色像素点占比及二值化结果. (a)ω=0.5%;(b)ω=0

    Figure  9.  Proportion of black pixels and the result of binarization:(a) ω = 0.5% ; (b) ω = 0

    图  10  全尾砂废石充填料浆中PC的均质化作用机理

    Figure  10.  Homogenization mechanism of polycarboxylate in filler slurry of whole tailings and waste rock

    图  11  水泥净浆的Zeta电位与PC掺量的关系图

    Figure  11.  Relationship between the Zeta potential of the cement paste and the PC content

    表  1  减水剂的性能指标

    Table  1.   Performance index of water-reducing agent

    TypepHCl content/%Na2SO4 content/%
    PC6.200.062.60
    FDN7.00–9.00≤1.00≤5.00
    AK9.720.280.74
    下载: 导出CSV

    表  2  掺PC减水剂胶结体强度测试结果

    Table  2.   Strength test results of cement mixed with PC water-reducing agen

    No.ω/%Compressive strength, σ/MPa
    3 d7 d28 d
    10.002.353.776.54
    20.103.115.147.72
    30.203.464.976.31
    40.303.265.095.77
    50.402.784.425.59
    60.502.433.955.26
    下载: 导出CSV

    表  3  不同条件下料浆表面单元及整体图像的熵值

    Table  3.   Entropy of the surface unit and the overall image of the slurry under different conditions

    No.Time/minWaste totail ratioω = 0ω = 0.50%
    Maximum entropy
    unit
    Minimum
    entropy unit
    Average unit entropyOverall
    image
    Maximum entropy
    unit
    Minimum entropy
    unit
    Average unit entropyOverall
    image
    136:43.963.733.8557.74 4.203.964.0861.18
    237:33.983.753.8758.00 4.213.924.0660.95
    335:53.973.703.8457.59 4.173.934.0560.80
    446:44.073.853.9659.41 4.274.044.1662.36
    547:34.063.833.9559.18 4.274.024.1562.21
    645:54.023.783.9058.51 4.234.004.1161.72
    756:44.013.773.8958.37 4.264.004.1361.98
    857:34.003.763.8858.18 4.193.954.0761.01
    955:54.043.813.9258.86 4.213.964.0961.29
    下载: 导出CSV

    表  4  料浆表面图像二值化后的黑色像素点占比

    Table  4.   Percentage of black pixels after binarization of the slurry surface image

    No.Time/minWaste to tail ratioPercentage of black pixels (h)/%
    ω=0ω = 0.50%
    135:540.3362.23
    236:435.1563.65
    337:342.4358.55
    445:516.4614.40
    546:413.9813.85
    647:315.2214.64
    755:523.2519.44
    856:421.5420.05
    957:321.9421.85
    下载: 导出CSV
  • [1] Li X B, Zhou J, Wang S F, et al. Review and practice of deep mining for solid mineral resources. Chin J Nonferrous Met, 2017, 27(6): 1236

    李夕兵, 周健, 王少锋, 等. 深部固体资源开采评述与探索. 中国有色金属学报, 2017, 27(6):1236
    [2] Cai M F. Development of China's metal mines in the 21st century. China Min Mag, 2001, 10(1): 11 doi: 10.3969/j.issn.1004-4051.2001.01.005

    蔡美峰. 中国金属矿山21世纪的发展前景评述. 中国矿业, 2001, 10(1):11 doi: 10.3969/j.issn.1004-4051.2001.01.005
    [3] Cheng H Y, Wu A X, Wu S C, et al. Research status and development trend of solid waste backfill in metal mines. Chin J Eng, 2022, 44(1): 11

    程海勇, 吴爱祥, 吴顺川, 等. 金属矿山固废充填研究现状与发展趋势. 工程科学学报, 2022, 44(1):11
    [4] Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517

    吴爱祥, 杨莹, 程海勇, 等. 中国膏体技术发展现状与趋势. 工程科学学报, 2018, 40(5):517
    [5] Wang X M, Zhao J W, Zhang Q L, et al. Optimal mining model of transition from open-pit to underground mining. J Central South Univ (Sci Technol), 2012, 43(4): 1434

    王新民, 赵建文, 张钦礼, 等. 露天转地下最佳开采模式. 中南大学学报(自然科学版), 2012, 43(4):1434
    [6] Ben-Awuah E, Richter O, Elkington T, et al. Strategic mining options optimization: Open pit mining, underground mining or both. Int J Min Sci Technol, 2016, 26(6): 1065 doi: 10.1016/j.ijmst.2016.09.015
    [7] Wu A X, Li H, Cheng H Y, et al. Status and prospects of research on the rheology of paste backfill using unclassified tailings (Part 2): Rheological measurement and prospects. Chin J Eng, 2021, 43(4): 451

    吴爱祥, 李红, 程海勇, 等. 全尾砂膏体流变学研究现状与展望(下): 流变测量与展望. 工程科学学报, 2021, 43(4):451
    [8] Ruan Z E, Wu A X, Wang Y M, et al. Multiple response optimization of key performance indicators of cemented paste backfill of total solid waste. Chin J Eng, 2022, 44(4): 496

    阮竹恩, 吴爱祥, 王贻明, 等. 全固废膏体关键性能指标的多目标优化. 工程科学学报, 2022, 44(4):496
    [9] Mou H W, Lv W S, Yang P. Application of a spiral pipe in a low stowing gradient backfilling pipeline and amendment of stowing gradient. Chin J Eng, 2016, 38(8): 1069

    牟宏伟, 吕文生, 杨鹏. 螺旋管在小倍线充填中的应用及充填倍线公式修正. 工程科学学报, 2016, 38(8):1069
    [10] Zhu L P, Ni W, Gao S J, et al. Adaptability and early hydration of a cementing agent prepared with red mud, slag, flue gas desulphurization gypsum and a little cement clinker. Chin J Eng, 2015, 37(4): 414

    祝丽萍, 倪文, 高术杰, 等. 赤泥−矿渣−脱硫石膏−少熟料胶结剂的适应性及早期水化. 工程科学学报, 2015, 37(4):414
    [11] Wang J D, Wu A X, Wang Y M, et al. Evaluation model and experimental study for segregation resistance of paste with coarse aggregate. J China Univ Min Technol, 2016, 45(5): 866

    王建栋, 吴爱祥, 王贻明, 等. 粗骨料膏体抗离析性能评价模型与实验研究. 中国矿业大学学报, 2016, 45(5):866
    [12] Kou Y P, Qi Z J, Sheng Y H, et al. Study on time-dependent rheological parameters of unclassified tailings cemented slurry under motion state. Nonferrous Met Min Sect, 2019, 71(1): 15

    寇云鹏, 齐兆军, 盛宇航, 等. 运动状态下全尾砂胶结料浆流变参数时变性研究. 有色金属(矿山部分), 2019, 71(1):15
    [13] Li X, Li C P, Yan B H, et al. Analysis of the influence factors of paste stirring based on discrete element method. Met Mine, 2021(3): 19

    李雪, 李翠平, 颜丙恒, 等. 基于离散元的膏体搅拌影响因素分析. 金属矿山, 2021(3):19
    [14] Yan Z P, Yin S H, Yan R F, et al. The effect of mixing time on the homogeneity and early strength of the coarse aggregate paste. Chin J Nonferrous Met,http://kns.cnki.net/kcms/detail/43.1238.TG.20210824.1021.002.html

    闫泽鹏, 尹升华, 严荣富, 等. 搅拌时间对粗骨料膏体均质性及早期强度的影响. 中国有色金属学报,http://kns.cnki.net/kcms/detail/43.1238.TG.20210824.1021.002.html
    [15] Wang H J, Yang L H, Wang Y, et al. Multi-scale materials’ dispersive mixing technology of unclassified tailings Paste. J Wuhan Univ Technol, 2017, 39(12): 76

    王洪江, 杨柳华, 王勇, 等. 全尾砂膏体多尺度物料搅拌均质化技术. 武汉理工大学学报, 2017, 39(12):76
    [16] Yang Z Q, Wang Y Q, Gao Q, et al. Research on pumping water reducing agent affecting on the strength of backfilling body and workability of paste slurry with tailing and rod grinding sand. J Fuzhou Univ Nat Sci, 2015, 43(1): 129

    杨志强, 王永前, 高谦, 等. 泵送减水剂对尾砂-棒磨砂膏体料浆和易性与充填体强度影响研究. 福州大学学报(自然科学版), 2015, 43(1):129
    [17] Cao E X. Research on Mechanism of Polycarboxylate Superplasticizer on Rheological Properties of Cement Paste [Dissertation]. Beijing: Tsinghua University, 2011

    曹恩祥. 聚羧酸减水剂对水泥净浆体系流变性能的作用机理研究[学位论文]. 北京: 清华大学, 2011
    [18] Jézéquel P H, Collin V. Mixing of concrete or mortars: Dispersive aspects. Cem Concr Res, 2007, 37(9): 1321 doi: 10.1016/j.cemconres.2007.05.007
    [19] Gao J C, Cui X X, Shen Y F, et al. Fabrication of HDPE composites via a novel friction stir processing technology. J Thermoplast Compos Mater, 2019, 32(10): 1305 doi: 10.1177/0892705718796543
    [20] Qian S S, Yao Y, Wang Z M, et al. Synthesis and mechanism of polyphosphate superplasticizer. J Chin Ceram Soc, 2021, 49(5): 910

    钱珊珊, 姚燕, 王子明, 等. 聚膦酸减水剂的合成、表征及机理. 硅酸盐学报, 2021, 49(5):910
    [21] Dong Y. Research on Multi-Solid Waste Collaborative Comprehensive Utilization of Mining Backfill in Jinchuan Mine [Dissertation]. Beijing: University of Science and Technology Beijing, 2019

    董越. 多固废资源在金川矿山充填采矿中协同综合利用研究[学位论文]. 北京: 北京科技大学, 2019
    [22] Basu P, Thomas B S, Gupta R C, et al. Properties of sustainable self-compacting concrete incorporating discarded sandstone slurry. J Clean Prod, 2021, 281: 125313 doi: 10.1016/j.jclepro.2020.125313
    [23] Xiao C Y, Zhu W X. Threshold selection algorithm for image segmentation based on Otsu rule and image entropy. Comput Eng, 2007, 33(14): 188 doi: 10.3969/j.issn.1000-3428.2007.14.066

    肖超云, 朱伟兴. 基于Otsu准则及图像熵的阈值分割算法. 计算机工程, 2007, 33(14):188 doi: 10.3969/j.issn.1000-3428.2007.14.066
    [24] Yang L H, Wang H J, Wu A X, et al. Status and development tendency of the full-tailings paste mixing technology. Met Mine, 2016(7): 34 doi: 10.3969/j.issn.1001-1250.2016.07.005

    杨柳华, 王洪江, 吴爱祥, 等. 全尾砂膏体搅拌技术现状及发展趋势. 金属矿山, 2016(7):34 doi: 10.3969/j.issn.1001-1250.2016.07.005
    [25] Wang C Y, Zhao H, Dai Z H, et al. Effect of surfactant on the rheological properties of hydrophilic particle suspension. Chin J Appl Chem, 2021, 38(4): 398

    王春雨, 赵辉, 代正华, 等. 表面活性剂对亲水性颗粒悬浮液流变性的影响. 应用化学, 2021, 38(4):398
    [26] Du X D, Liu M, Bi Y, et al. Effect of polymethyl carboxylic acid water reducing agent on zeta potential of cement slurry and its rheological properties// A Compilation of Excellent Papers of Cologne Cup 2016 on New Progress in Research and Application of Chemical Admixtures and Mineral Admixtures in China. Qingdao, 2016: 186

    杜小弟, 刘明, 毕耀, 等. 聚甲基羧酸减水剂对水泥浆体Zeta电位及其流变性影响 // 中国化学外加剂及矿物外加剂研究与应用新进展2016年科隆杯优秀论文汇编. 青岛, 2016:186
    [27] Cao G S, Tong L, Hu Y, et al. Optimization of flocculant dosage by Zeta potential of the particles in sewage. J Daqing Petroleum Inst, 2009, 33(1): 17

    曹广胜, 佟乐, 胡仪, 等. 基于污水悬浮颗粒Zeta电位的絮凝剂用量优化. 大庆石油学院学报, 2009, 33(1):17
    [28] Wu J Z, Beliakov G. Nonadditive robust ordinal regression with nonadditivity index and multiple goal linear programming. Int J Intell Syst, 2019, 34(7): 1732 doi: 10.1002/int.22119
    [29] Sadeghi H, Moslemi F. A multiple objective programming approach to linear bilevel multi-follower programming. AIMS Math, 2019, 4(3): 763 doi: 10.3934/math.2019.3.763
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  4
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-18
  • 网络出版日期:  2022-05-11

目录

    /

    返回文章
    返回