• 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同影响因素下路用黄河泥沙动剪切模量和阻尼比试验及理论模型研究

王钰轲 李俊豪 邵景干 余翔

王钰轲, 李俊豪, 邵景干, 余翔. 不同影响因素下路用黄河泥沙动剪切模量和阻尼比试验及理论模型研究[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2022.05.20.001
引用本文: 王钰轲, 李俊豪, 邵景干, 余翔. 不同影响因素下路用黄河泥沙动剪切模量和阻尼比试验及理论模型研究[J]. 工程科学学报. doi: 10.13374/j.issn2095-9389.2022.05.20.001
WANG Yu-ke, LI Jun-hao, SHAO Jing-gan, YU Xiang. Experimental investigation and theoretical models on dynamic shear moduli and damping ratios for Yellow River sediment under different influence factors[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.05.20.001
Citation: WANG Yu-ke, LI Jun-hao, SHAO Jing-gan, YU Xiang. Experimental investigation and theoretical models on dynamic shear moduli and damping ratios for Yellow River sediment under different influence factors[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.05.20.001

不同影响因素下路用黄河泥沙动剪切模量和阻尼比试验及理论模型研究

doi: 10.13374/j.issn2095-9389.2022.05.20.001
基金项目: 国家自然科学基金资助项目(52178369, 52109140);河南省青年人才托举工程资助项目(2021HYTP016)
详细信息
    通讯作者:

    E-mail: 289900371@qq.com

  • 中图分类号: TU441

Experimental investigation and theoretical models on dynamic shear moduli and damping ratios for Yellow River sediment under different influence factors

More Information
  • 摘要: 沿黄河高速公路建设过程中,黄河泥沙作为路基填料的可行性已经得到验证和重视,然而目前有关黄河泥沙作为路基填料的动力特性的研究较少。本文利用英国GDS动态三轴试验系统,对取自黄河中下游郑州段的泥沙进行应力控制的动三轴试验,探究了围压、相对密实度和试验频率对黄河泥沙动剪应力–动剪应变关系、动剪切模量G和阻尼比D的影响,绘制了动剪应力–动剪应变关系骨干曲线和滞回曲线。结果表明,黄河泥沙的动剪切模量、阻尼比与剪应变关系可以用Hardin双曲线模型描述,围压对GD的影响较大、试验频率对GD的影响较小。综合与其他土体的动力特性对比表明,黄河泥沙动剪切模量折减曲线规律以及阻尼比D曲线规律和其他土体相符,其动力特性更接近于粉土和砂土,但与其他土体并不完全一致,具有一定的特殊性。最后,本文考虑了围压、相对密实度的影响,并结合现有经验公式,建立可以较好描述黄河泥沙最大动剪切模量Gmax与围压、孔隙比关系的经验公式,同时建立了动剪切模量比G/GmaxD的数学模型,拟合结果显示,建立的模型能较好地描述黄河泥沙的G/GmaxD随剪应变的变化规律。

     

  • 图  1  黄河泥沙级配曲线

    Figure  1.  Yellow River sediment gradation curve

    图  2  GDS三轴仪

    Figure  2.  GDS triaxial instrument

    图  3  黄河泥沙动剪应力–动剪应变关系曲线.(a) Dr=40%;(b) Dr=60%;(c) Dr=80%

    Figure  3.  Dynamic shear stress–dynamic shear strain curve of Yellow River sediment: (a) Dr=40%; (b) Dr=60%; (c) Dr=80%

    图  4  动剪应力–动剪应变关系曲线.(a)不同围压;(b)不同频率

    Figure  4.  Dynamic shear stress–dynamic shear strain curve: (a) different confining pressures; (b) different frequencies

    图  5  不同影响因素下动剪切模量–剪应变关系曲线.(a)不同围压;(b)不同相对密实度;(c)不同频率

    Figure  5.  Dynamic shear modulus–shear strain curve under different influencing factors: (a) different confining pressures; (b) different relative densities; (c) different frequencies

    图  6  不同影响因素下阻尼比–剪应变关系曲线。(a)不同围压;(b)不同相对密实度;(c)不同频率

    Figure  6.  Different influencing factor damping ratio–shear strain curves: (a) different confining pressures; (b) different relative densities; (c) different frequencies

    图  7  不同土Dγd关系曲线

    Figure  7.  Dγd curves of different soils

    图  8  (a) G–γd拟合示意图; (b) lgGmaxlg${\sigma'}_{ \mathrm{m}}$关系拟合

    Figure  8.  (a) Gγd fitting schematic; (b) lgGmaxlg${\sigma '}_{ \mathrm{m}}$ relationship fitting

    图  9  不同土Gmax围压关系曲线

    Figure  9.  Gmax–confining pressure curves of different soils

    图  10  (a) Gmax归一化曲线图;(b)不同经验模型Gmax试验值与预测值对比

    Figure  10.  (a) Normalized curve of Gmax; (b) comparison of experimental and predicted Gmax values of different empirical models

    图  11  动剪切模量比–剪应变关系曲线。(a)不同围压;(b)不同相对密实度;(c)不同频率

    Figure  11.  Dynamic shear modulus ratio–shear strain curve: (a) different confining pressures; (b) different relative densities; (c) different frequencies

    图  12  不同土的动剪切模量折减曲线

    Figure  12.  Dynamic shear modulus reduction curves of different soils

    图  13  G/Gmaxγd拟合图。(a)不同围压;(b)不同相对密实度;(c)不同频率

    Figure  13.  G/Gmaxγd fitting diagram: (a) different confining pressures; (b) different relative densities; (c) different frequencies

    图  14  阻尼比拟合曲线示意图。(a)不同围压;(b)不同相对密实度;(c)不同频率

    Figure  14.  Damping ratio fitting curve diagram: (a) different confining pressures; (b) different relative densities; (c) different frequencies

    表  1  试验用砂物性指标

    Table  1.   Physical properties of sand for testing

    Sample nameCoefficient of uniformityCoefficient of curvatureMaximum dry density/(g·cm−3)Minimum dry density/(g·cm−3)Optimum water content/%Plasticity indexSpecific gravity
    Yellow River sediment5.0801.6621.6501.35713.711.42.7
    下载: 导出CSV

    表  2  试验方案

    Table  2.   Test scheme

    Confining pressure/kPaRelative compaction/%Loading frequency/HzDynamic stress amplitude/kPaNumber of cycles
    50601Based on the test to determine (from 0.1 or 0.05 times the confining pressure to start the step-by-step loading until the specimen is damaged)6
    10040/60/801
    0.01/0.1/
    0.5/1/2
    200601
    400601
    800601
    下载: 导出CSV

    表  3  Gγd拟合结果

    Table  3.   Gγd fitting results

    Confining pressure/
    kPa
    Relative compaction /
    %
    Loading frequency/Hzm/10−3n/10−3R2Gmax/MPa
    5060120.45146.130.99748.90
    10040110.7098.930.99893.46
    6011.5486.080.99786.66
    8010.1671.790.99698.43
    100600.0110.21104.230.99597.94
    0.110.62111.530.99994.16
    0.510.4589.550.99495.69
    111.5486.080.99786.66
    210.9671.740.99691.24
    2006016.8150.410.997146.84
    4004.6923.330.998213.22
    8003.3612.030.995297.62
    下载: 导出CSV

    表  4  Gmax预测结果

    Table  4.   Gmax prediction results

    Confining pressure/kPaRelative compaction/%Loading frequency/HzGmax test valueThis paperLiang KeSaxena
    5060148.9063.1652.0239.76
    10040193.4684.2371.4753.27
    6086.6693.5180.2359.20
    8098.43103.7689.9465.88
    100600.0197.9493.5180.2359.20
    0.194.1693.5180.2359.20
    0.595.6993.5180.2359.20
    186.6693.5180.2359.20
    291.2493.5180.2359.20
    200601146.84138.46123.7388.12
    400213.22205.02190.81131.18
    800297.62303.57294.27195.28
    下载: 导出CSV

    表  5  G/Gmaxγd拟合结果

    Table  5.   G/Gmaxγd fitting results

    Confining pressure/kPaRelative compaction/%Loading frequency/Hzγ0αβR2
    506010.1377491.123360.477420.99756
    1004010.10571.175270.511950.99732
    600.13141.124350.513810.99745
    800.13661.051750.5090.99531
    100600.010.098981.043430.525630.996
    0.10.095961.196970.518550.998
    0.50.1161521.116640.529230.9959
    10.13141.124350.513810.99745
    20.1475421.15630.509240.9966
    2006010.13150.997850.516810.99784
    4000.20321.175530.511440.99827
    8000.2711.045090.522310.99571
    下载: 导出CSV

    表  6  Dγ拟合结果

    Table  6.   Dγ fitting results

    Confining pressure
    /kPa
    Relative compaction/%Loading frequency/HzDminγrsnR2
    506010.0150.1377490.267761.100170.96232
    1004010.0050.10570.252821.819160.9971
    600.0050.13140.251251.680610.99383
    800.0060.13660.242411.666330.99513
    100600.010.010.098980.25511.724920.99819
    0.10.012980.095960.238191.718840.9934
    0.50.00590.1161520.249891.731970.99224
    10.0050.13140.251251.680610.99459
    20.0040.1475420.236021.789680.99364
    2006010.00580.13150.233852.084710.99149
    4000.005680.20320.249711.672250.9987
    8000.0030.2710.241242.097110.99809
    下载: 导出CSV
  • [1] Ruan Z E, Wu A X, Wang Y M, et al. Effect of flocculation sedimentation on the yield stress of thickened ultrafine tailings slurry. Chin J Eng, 2021, 43(10): 1276

    阮竹恩, 吴爱祥, 王贻明, 等. 絮凝沉降对浓缩超细尾砂料浆屈服应力的影响. 工程科学学报, 2021, 43(10):1276
    [2] Wang H J, Wang X L, Kou Y P, et al. Loop test study on the high-concentration cemented filling of full tailings. Chin J Eng, 2021, 43(2): 215

    王洪江, 王小林, 寇云鹏, 等. 全尾砂高浓度胶结充填的环管试验. 工程科学学报, 2021, 43(2):215
    [3] Hardin B O, Drnevich V P. Shear modulus and damping in soils: Measurement and parameter effects (terzaghi leture). J Soil Mech And Found Div, 1972, 98(6): 603 doi: 10.1061/JSFEAQ.0001756
    [4] Hardin B O, Richart J F E. Elastic wave velocities in granular soils. J Soil Mech And Found Div, 1963, 89(1): 33 doi: 10.1061/JSFEAQ.0000493
    [5] Kokusho T. Cyclic triaxial test of dynamic soil properties for wide strain range. Soils Found, 1980, 20(2): 45 doi: 10.3208/sandf1972.20.2_45
    [6] Saxena S K, Reddy K R. Dynamic moduli and damping ratios for Monterey No.0 sand by resonant column tests. Soils Found, 1989, 29(2): 37
    [7] Liang K, He Y, Chen G X. Experimental study of dynamic shear modulus and damping ratio characteristics of coral sand from Nansha Islands. Rock Soil Mech, 2020, 41(1): 23

    梁珂, 何杨, 陈国兴. 南沙珊瑚砂的动剪切模量和阻尼比特性试验研究. 岩土力学, 2020, 41(1):23
    [8] Liu X, Li S, Liu X L, et al. Experimental study on dynamic shear modulus and damping ratio of calcareous sands in the South China Sea. Chin J Geotech Eng, 2019, 41(9): 1773

    刘鑫, 李飒, 刘小龙, 等. 南海钙质砂的动剪切模量与阻尼比试验研究. 岩土工程学报, 2019, 41(9):1773
    [9] Yasuhara K, Yamanouchi T, Hirao K. Cyclic strength and deformation of normally consolidated clay. Soils Found, 1982, 22(3): 77 doi: 10.3208/sandf1972.22.3_77
    [10] Zhang R, Tu Y J, Fei W P, et al. Effect of vibration frequency on dynamic properties of saturated cohesive soil. Rock Soil Mech, 2006, 27(5): 699 doi: 10.3969/j.issn.1000-7598.2006.05.004

    张茹, 涂扬举, 费文平, 等. 振动频率对饱和黏性土动力特性的影响. 岩土力学, 2006, 27(5):699 doi: 10.3969/j.issn.1000-7598.2006.05.004
    [11] Li R S, Chen L W, Yuan X M, et al. Experimental study on influences of different loading frequencies on dynamic modulus and damping ratio. Chin J Geotech Eng, 2017, 39(1): 71 doi: 10.11779/CJGE201701005

    李瑞山, 陈龙伟, 袁晓铭, 等. 荷载频率对动模量阻尼比影响的试验研究. 岩土工程学报, 2017, 39(1):71 doi: 10.11779/CJGE201701005
    [12] Sun J, Yuan X M. Effects of consolidation ratios of sands on dynamic shear modulus and response spectrum of soil surface. Rock Soil Mech, 2007, 28(3): 443 doi: 10.3969/j.issn.1000-7598.2007.03.003

    孙静, 袁晓铭. 固结比对砂土动剪切模量及地表反应谱的影响. 岩土力学, 2007, 28(3):443 doi: 10.3969/j.issn.1000-7598.2007.03.003
    [13] Liu X Z, Chen G X, Hu Q X. Primary study on dynamic shear modulus and damping ratio of recently deposited soil in area of Nanjing. Earthq Eng Eng Vib, 2002, 22(5): 127 doi: 10.3969/j.issn.1000-1301.2002.05.023

    刘雪珠, 陈国兴, 胡庆兴. 南京地区新近沉积土的动剪切模量和阻尼比的初步研究. 地震工程与工程振动, 2002, 22(5):127 doi: 10.3969/j.issn.1000-1301.2002.05.023
    [14] Hardin B O, Drnevich V P. Shear modulus and damping in soils: Design equations and curves. J Soil Mech And Found Div, 1972, 98(7): 667 doi: 10.1061/JSFEAQ.0001760
    [15] Menq F Y. Dynamic Properties of Sandy and Gravelly Soils [Dissertation]. Texas: The University of Texas at Austin, 2003
    [16] Liang K, Chen G X, Liu K, et al. Degradation properties and prediction model of maximum shear modulus of saturated coral sand under cyclic triaxial loading. Rock Soil Mech, 2020, 41(2): 601 doi: 10.16285/j.rsm.2019.0082

    梁珂, 陈国兴, 刘抗, 等. 饱和珊瑚砂最大动剪切模量的循环加载衰退特性及预测模型. 岩土力学, 2020, 41(2):601 doi: 10.16285/j.rsm.2019.0082
    [17] Wang J. Experimental Study on Dynamic Elasticity Modulus and Damping Ratio of Coarse-Grained Soils [Dissertation]. Changsha: Central South University, 2013

    王佳. 粗粒土动弹性模量与阻尼比试验研究[学位论文]. 长沙: 中南大学, 2013
    [18] Luan M T, He Y, Xu C S, et al. Experimental study of cyclic shear behaviour of silty soils in Yellow River Delta. Rock Soil Mech, 2008, 29(12): 3211 doi: 10.3969/j.issn.1000-7598.2008.12.006

    栾茂田, 何杨, 许成顺, 等. 黄河三角洲粉土循环剪切特性的试验研究. 岩土力学, 2008, 29(12):3211 doi: 10.3969/j.issn.1000-7598.2008.12.006
    [19] Rollins K M, Evans M D, Diehl N B, et al. Shear modulus and damping relationships for gravels. J Geotech Geoenviron Eng, 1998, 124(5): 396 doi: 10.1061/(ASCE)1090-0241(1998)124:5(396)
    [20] Chen G X, Zhou Z L, Pan H, et al. The influence of undrained cyclic loading patterns and consolidation states on the deformation features of saturated fine sand over a wide strain range. Eng Geol, 2016, 204: 77 doi: 10.1016/j.enggeo.2016.02.008
    [21] Chen G X, Zhou Z L, Sun T, et al. Shear modulus and damping ratio of sand-gravel mixtures over a wide strain range. J Earthq Eng, 2019, 23(8): 1407 doi: 10.1080/13632469.2017.1387200
    [22] He X M, Chen Z Q, Zhang T. Experimental studies on dynamic shear modulus and damping ratio of sandy soil in Wuhan. World Earthq Eng, 2010, 26(Suppl 1): 41

    何晓民, 陈志强, 张婷. 武汉砂土动剪切模量与阻尼比的试验研究. 世界地震工程, 2010, 26(增刊1): 41
    [23] Senetakis K, Anastasiadis A, Pitilakis K. The small-strain shear modulus and damping ratio of quartz and volcanic sands. ASTM International, 2012, 35(6): 1
    [24] Guo K X. Experimental Study on Dynamic Triaxial of Unsaturated Loess [Dissertation]. Xi'an: Changan University, 2015

    郭可骍. 非饱和黄土的动三轴试验研究[学位论文]. 西安: 长安大学, 2015
    [25] Martin P P, Seed H B. One-dimensional dynamic ground response analyses. J Geotech Engrg Div, 1982, 108(7): 935 doi: 10.1061/AJGEB6.0001316
  • 加载中
图(14) / 表(6)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  16
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-20
  • 网络出版日期:  2022-08-08

目录

    /

    返回文章
    返回