• 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄铜矿浮选体系晶态/无定形二氧化硅的流变特性与夹带行为

王磊 李孟乐 邹玉超 廖寅飞 马子龙 桂夏辉

王磊, 李孟乐, 邹玉超, 廖寅飞, 马子龙, 桂夏辉. 黄铜矿浮选体系晶态/无定形二氧化硅的流变特性与夹带行为[J]. 工程科学学报, 2023, 45(8): 1272-1280. doi: 10.13374/j.issn2095-9389.2022.06.28.001
引用本文: 王磊, 李孟乐, 邹玉超, 廖寅飞, 马子龙, 桂夏辉. 黄铜矿浮选体系晶态/无定形二氧化硅的流变特性与夹带行为[J]. 工程科学学报, 2023, 45(8): 1272-1280. doi: 10.13374/j.issn2095-9389.2022.06.28.001
WANG Lei, LI Meng-le, ZOU Yu-chao, LIAO Yin-fei, MA Zi-long, GUI Xia-hui. Rheological properties and entrainment behavior of quartz/amorphous silica in chalcopyrite flotation[J]. Chinese Journal of Engineering, 2023, 45(8): 1272-1280. doi: 10.13374/j.issn2095-9389.2022.06.28.001
Citation: WANG Lei, LI Meng-le, ZOU Yu-chao, LIAO Yin-fei, MA Zi-long, GUI Xia-hui. Rheological properties and entrainment behavior of quartz/amorphous silica in chalcopyrite flotation[J]. Chinese Journal of Engineering, 2023, 45(8): 1272-1280. doi: 10.13374/j.issn2095-9389.2022.06.28.001

黄铜矿浮选体系晶态/无定形二氧化硅的流变特性与夹带行为

doi: 10.13374/j.issn2095-9389.2022.06.28.001
基金项目: 国家自然科学基金资助项目(51804307)
详细信息
    通讯作者:

    王磊,E-mail: lei.wang@cumt.edu.cn

    桂夏辉,E-mail: guixiahui1985@163.com

  • 中图分类号: TD952

Rheological properties and entrainment behavior of quartz/amorphous silica in chalcopyrite flotation

More Information
  • 摘要: 硅酸盐类脉石夹带是制约贫杂难选矿高效浮选分离的难题之一。借助分批浮选试验、流变学测试、冷冻扫描电镜测试、颗粒沉降试验,探究了黄铜矿浮选体系晶态/无定形二氧化硅的流变特性与夹带行为。结果显示,随着脉石中无定形二氧化硅含量的增加,矿浆表观黏度呈指数型增大,黄铜矿回收率持续降低,脉石回收率先升高后降低。脉石回收率发生变化是脉石夹带率、水回收率共同作用的结果:在黏度低增长区,脉石夹带率上移对脉石回收率升高起主导作用,而在黏度中、高增长区,水回收率减少是脉石回收率由升转降的主要原因。总脉石夹带率和各粒级脉石夹带率均随无定形二氧化硅含量增加而升高,且各粒级脉石夹带率呈现出明显差异性,细粒脉石夹带率增幅最大。冷冻扫描电镜与沉降试验表明,无定形二氧化硅与石英颗粒形成了聚集体结构,导致矿浆体系黏度增大,因而脉石颗粒沉降减缓、泡沫排液“洗涤”脉石作用弱化,单位泡沫水中的脉石质量增大,脉石夹带率升高。

     

  • 图  1  矿物样品的X射线衍射图谱

    Figure  1.  X-ray diffraction patterns of the mineral samples

    图  2  磨矿矿物粒度组成

    Figure  2.  Size distribution of the mineral samples after grinding

    图  3  冷冻扫描电镜构造示意图

    Figure  3.  Schematic of the cryo-SEM structure

    图  4  石英/无定形二氧化硅矿浆流变图

    Figure  4.  Rheograms of the quartz/amorphous silica pulps

    图  5  石英/无定形二氧化硅矿浆表观黏度(剪切速率为100 s−1

    Figure  5.  Apparent viscosity of the quartz/amorphous silica pulps at a shear rate of 100 s−1

    图  6  不同无定形二氧化硅含量下浮选脉石回收率与水回收率

    Figure  6.  Entrained gangue recoveries and water recoveries obtained from the flotation with different amorphous silica contents

    图  7  脉石中无定形二氧化硅含量对水回收率的影响

    Figure  7.  Effect of the amorphous silica content in the gangue on water recovery

    图  8  脉石中无定形二氧化硅含量对全粒级(a)和分粒级(b)夹带率的影响

    Figure  8.  Effect of the amorphous silica content in the gangue on the degree of entrainment on a unsized (a) and size-by-size (b) basis

    图  9  石英/无定形二氧化硅悬浮液的沉降行为

    Figure  9.  Settling of quartz/amorphous silica suspensions

    图  10  石英/无定形二氧化硅悬浮液中颗粒形貌图. (a) 石英; (b) 石英/无定形二氧化硅质量比为4∶1; (c) 石英/无定形二氧化硅质量比为3∶2; (d) 石英/无定形二氧化硅质量比为2∶3; (e) 石英/无定形二氧化硅质量比为1∶4; (f) 无定形二氧化硅

    Figure  10.  Cryo-SEM images of the quartz/amorphous silica particles in the suspensions∶ (a) quartz; (b) mass ratio of quartz to amorphous silica at 4∶1; (c) mass ratio of quartz to amorphous silica at 3∶2; (d) mass ratio of quartz to amorphous silica at 2∶3; (e) mass ratio of quartz to amorphous silica at 1∶4; (f) amorphous silica

    图  11  无定形二氧化硅改变脉石夹带率机理示意图

    Figure  11.  Schematic of the mechanism for the amorphous silica particles changing the degree of entrainment

    图  12  脉石中无定形二氧化硅含量对精矿铜品位、产率和黄铜矿回收率的影响

    Figure  12.  Effects of the amorphous silica content in the gangue on concentrate copper grade, yield, and chalcopyrite recovery

    表  1  浮选入料组成矿物

    Table  1.   Minerals used for the flotation feed

    Sample namePurity/%Manufacturer
    Chalcopyrite96Hubei Daye Copper Mine
    Quartz99Yijing Quartz Sand Factory
    Amorphous silica99Aladdin Biochemical Technology
    下载: 导出CSV

    表  2  浮选试验药剂

    Table  2.   Reagents used in the flotation tests

    Sample namePurityManufacturer
    Sodium ethyl xanthate90%Aladdin Biochemical Technology Co., Ltd.
    Methyl isobutyl carbinolAnalytically pureSinopharm Chemical Reagent Co., Ltd.
    Sodium carbonateAnalytically pureSinopharm Chemical Reagent Co., Ltd.
    下载: 导出CSV
  • [1] Northey S, Mohr S, Mudd G M, et al. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour Conserv Recycl, 2014, 83: 190 doi: 10.1016/j.resconrec.2013.10.005
    [2] Wang L, Peng Y, Runge K, et al. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Miner Eng, 2015, 70: 77 doi: 10.1016/j.mineng.2014.09.003
    [3] Wang C, Sun C B, Liu Q. Entrainment of gangue minerals in froth flotation: Mechanisms, models, controlling factors, and abatement techniques—a review. Min Metall Explor, 2021, 38(2): 673
    [4] Li H Q, Zheng H F, Ge W, et al. A review of froth entrainment in flotation process. Met Mine, 2018(12): 67 doi: 10.19614/j.cnki.jsks.201812012

    李洪强, 郑惠方, 戈武, 等. 浮选过程中的泡沫夹带研究进展. 金属矿山, 2018(12):67 doi: 10.19614/j.cnki.jsks.201812012
    [5] Lu Y, Li H Q, Feng Q M. Entrainment behavior and control of sericite. J Central South Univ Sci Technol, 2015, 46(1): 20

    陆英, 李洪强, 冯其明. 绢云母的夹带行为及其控制. 中南大学学报(自然科学版), 2015, 46(1):20
    [6] Yang B, Yin W Z, Fu Y F, et al. Effect of citric acid on entrainment behavior of fine chlorite. J Northeast Univ Nat Sci, 2019, 40(4): 569 doi: 10.12068/j.issn.1005-3026.2019.04.022

    杨斌, 印万忠, 付亚峰, 等. 柠檬酸对微细粒绿泥石夹带行为的影响. 东北大学学报(自然科学版), 2019, 40(4):569 doi: 10.12068/j.issn.1005-3026.2019.04.022
    [7] Yu Y X, Ma L Q, Zhang Z L, et al. Mechanism of entrainment and slime coating on coal flotation. J China Coal Soc, 2015, 40(3): 652 doi: 10.13225/j.cnki.jccs.2014.0605

    于跃先, 马力强, 张仲玲, 等. 煤泥浮选过程中的细泥夹带与罩盖机理. 煤炭学报, 2015, 40(3):652 doi: 10.13225/j.cnki.jccs.2014.0605
    [8] Ndlovu B, Farrokhpay S, Bradshaw D. The effect of phyllosilicate minerals on mineral processing industry. Int J Miner Process, 2013, 125: 149 doi: 10.1016/j.minpro.2013.09.011
    [9] Sun Z J, Wu X Q, Li C B, et al. A summary of high content slime ore flotation. Nonferrous Met, 2020(1): 59

    孙志健, 吴熙群, 李成必, 等. 高含泥矿石浮选综述. 有色金属(选矿部分), 2020(1):59
    [10] Jeldres R I, Uribe L, Cisternas L A, et al. The effect of clay minerals on the process of flotation of copper ores−A critical review. Appl Clay Sci, 2019, 170: 57 doi: 10.1016/j.clay.2019.01.013
    [11] Zheng X, Johnson N W, Franzidis J P. Modelling of entrainment in industrial flotation cells: Water recovery and degree of entrainment. Miner Eng, 2006, 19(11): 1191 doi: 10.1016/j.mineng.2005.11.005
    [12] Ndlovu B, Becker M, Forbes E, et al. The influence of phyllosilicate mineralogy on the rheology of mineral slurries. Miner Eng, 2011, 24(12): 1314 doi: 10.1016/j.mineng.2011.05.008
    [13] Chen X M, Hadde E, Liu S Q, et al. The effect of amorphous silica on pulp rheology and copper flotation. Miner Eng, 2017, 113: 41 doi: 10.1016/j.mineng.2017.08.001
    [14] Wang L, Peng Y, Runge K. Entrainment in froth flotation: The degree of entrainment and its contributing factors. Powder Technol, 2016, 288: 202 doi: 10.1016/j.powtec.2015.10.049
    [15] Meng J, Tabosa E, Xie W G, et al. A review of turbulence measurement techniques for flotation. Miner Eng, 2016, 95: 79 doi: 10.1016/j.mineng.2016.06.007
    [16] Ralston J, Fornasiero D, Grano S, et al. Reducing uncertainty in mineral flotation—Flotation rate constant prediction for particles in an operating plant ore. Int J Miner Process, 2007, 84(1-4): 89 doi: 10.1016/j.minpro.2006.08.010
    [17] Loosdrecht M C M, Nielsen P H, Lopez-Vazquez C M, et al. Experimental Methods in Wastewater Treatment. London: IWA Publishing, 2016
    [18] Zhang M, Peng Y J, Xu N. The effect of sea water on copper and gold flotation in the presence of bentonite. Miner Eng, 2015, 77: 93 doi: 10.1016/j.mineng.2015.03.006
    [19] Yianatos J, Contreras F, Díaz F, et al. Direct measurement of entrainment in large flotation cells. Powder Technol, 2009, 189(1): 42 doi: 10.1016/j.powtec.2008.05.013
    [20] Wang L, Runge K, Peng Y. The observed effect of flotation operating conditions and particle properties on water recovery at laboratory scale. Miner Eng, 2016, 94: 83 doi: 10.1016/j.mineng.2016.05.003
    [21] Neethling S J, Lee H T, Cilliers J J. Simple relationships for predicting the recovery of liquid from flowing foams and froths. Miner Eng, 2003, 16(11): 1123 doi: 10.1016/j.mineng.2003.06.014
    [22] Nguyen A V, Harvey P A, Jameson G J. Influence of gas flow rate and frothers on water recovery in a froth column. Miner Eng, 2003, 16(11): 1143 doi: 10.1016/j.mineng.2003.09.005
    [23] Melo F, Laskowski J S. Effect of frothers and solid particles on the rate of water transfer to froth. Int J Miner Process, 2007, 84(1-4): 33 doi: 10.1016/j.minpro.2007.04.003
    [24] Wang L, Li C. A brief review of pulp and froth rheology in mineral flotation. J Chem, 2020, 2020: 3894542
    [25] Yang B, Yin W Z, Zhu Z L, et al. A new model for the degree of entrainment in froth flotation based on mineral particle characteristics. Powder Technol, 2019, 354: 358 doi: 10.1016/j.powtec.2019.06.017
    [26] Raghavan S R, Walls H J, Khan S A. Rheology of silica dispersions in organic liquids: New evidence for solvation forces dictated by hydrogen bonding. Langmuir, 2000, 16(21): 7920 doi: 10.1021/la991548q
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  97
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-28
  • 网络出版日期:  2022-09-06
  • 刊出日期:  2023-08-25

目录

    /

    返回文章
    返回