Evolution, key technology, prospects, and applications of industrial network architecture
-
摘要: 基于工业互联网应具备的特征,结合现有工业互联网总体现状,分析总结传统工业自动化封闭式五层架构存在的问题。首先,提出支持数据高效流转的云、边端新型工业网络协同架构,架构的变革对现有技术提出挑战,同时也为传统自动化系统提供了新的机遇。其次,在总体架构的基础上,提出适配新型工业网络基础架构的两项关键技术。5G–时间敏感网络(Time-sensitive networking, TSN)协同传输技术,包括5G–TSN异构网络融合架构、网络时钟适配机制以及基于软件定义网络(Software defined network,SDN)的融合管控和资源调度三部分技术内容;基于确定性网络的云化可编程逻辑控制器(Programmable logic controller,PLC)技术包括工业控制虚拟化和5G云化工业控制技术两部分技术内容。基于此,提出自主设计面向实时运动控制的5G云化PLC与EtherCAT融合系统,以及面向实时运动控制的EtherCAT与TSN融合系统试验平台,并验证了新型工业网络架构的科学性和合理性。最后,对未来网络、控制、计算一体化工业自动化系统中的高效性、可靠性和安全性之间的融合问题及潜在解决方案进行了探讨。Abstract: Based on a summary of the characteristics of the industrial Internet, combined with the overall status of the existing industrial Internet, this paper analyzes the problems of the traditional industrial automation closed five-tier architecture and concludes that the current industrial Internet remains in a stage of technological development and maturation, which restricts the promotion and standardization of China’s intelligent manufacturing level to some extent. In the future, the industrial Internet will break the original data hierarchy structure, break the data barrier, and realize the development of intelligent manufacturing toward intelligent, flattening, lightweight, and green. First, this paper proposes a new industrial network collaboration architecture on the cloud side that supports efficient data flow. The proposed architecture is a flat, platform-based structure that realizes cloud-side collaboration and the integration of control, computing power, and network. Second, on the basis of the overall architecture of the industrial network, two key technologies are proposed to adapt the new industrial network infrastructure. One is 5G–time-sensitive networking (TSN) collaborative transmission technology. TSN realizes the interconnection and integration of heterogeneous networks in the industrial field based on the data link layer, and 5G–TSN collaborative transmission has become an important evolution trend of the intelligent factory network. Three key technical contents are introduced: 5G–TSN heterogeneous network convergence architecture, network clock adaptation mechanism, and software defined network (SDN)-based integration management and resource scheduling. The other key technology is cloud PLC technology based on a deterministic network, and the virtualization and cloud control system is the basis for breaking the original closed industrial control system. On the one hand, cloud-based hardware resources can be used to achieve one-to-many control, saving a large amount of industrial control equipment deployment investment costs. More importantly, the centralized control system can achieve unified control and optimization of global resources. This paper introduces the virtualization 5G cloud chemical industry control technology with two parts: technical content and technical route. Third, this paper proposes a cloud-based allocation of control resources and a cloud–network integration collaboration scenario and designs the 5G cloud-based programmable logic controller (PLC) and EtherCAT fusion system and the EtherCAT and TSN fusion system for real-time motion control. Through the testing of the end-to-end delay and cross-network time synchronization accuracy of the actual system, the current end-to-end delay of network transmission is less than 5 ms, the cross-network time synchronization error is between 100–400 us, and the accuracy is less than 100 ns These performance indicators reach the current industry-leading level. The test platform verifies the scientificalness and rationality of the new industrial network architecture. Finally, the integration problems and potential solutions of efficiency, reliability, and security are discussed in the future industrial automation system integrating network, control, and computing.
-
图 4 5G–TSN端到端网络架构[27]
Figure 4. 5G–TSN end-to-end network architecture[27]
Notes: AF represents application function; AMF represents access management function; CNC represents centralized network configuration; CUC represents centralized user configuration; DS–TT represents TSN converter at terminal side; GM represents master clock; NEF represents network open function; NW–TT represents network side TSN converter; PCF represents policy control function; RAN represents wireless access network; SMF represents session management function; TSN represents time sensitive network; UDM represents unified data management; UE represents user equipment; UPF represents user plane function
图 11 多天车协同控制系统原型试验床构建及验证. (a) 多天车协同控制系统原型试验床; (b) 5G云化PLC与EtherCAT融合系统指令端到端传输测试结果
Figure 11. Construction and verification of the prototype testbed for multi-crown block collaborative system: (a) prototype testbed for the multi-crown block collaborative control system; (b) end-to-end test results of 5G cloud PLC and EtherCAT integration system commands
-
参考文献
[1] Qi J, Wang W, Chen M X, et al. Concept, architecture and key technologies of industrial internet. Chin J Internet Things, 2022, 6(2): 38亓晋, 王微, 陈孟玺, 等. 工业互联网的概念、体系架构及关键技术. 物联网学报, 2022, 6(2):38 [2] Jagatheesaperumal S K, Rahouti M, Ahmad K, et al. The Duo of artificial intelligence and big data for industry 4.0: Applications, techniques, challenges, and future research directions. IEEE Internet Things J, 2022, 9(15): 12861 [3] Javaid M, Haleem A, Singh R P, et al. Artificial intelligence applications for industry 4.0: A literature-based study. J Ind Intg Mgmt, 2022, 7(1): 83 doi: 10.1142/S2424862221300040 [4] Yuan C X, Li G Y, Kamarthi S, et al. Trends in intelligent manufacturing research: A keyword co-occurrence network based review. J Intell Manuf, 2022, 33(2): 425 doi: 10.1007/s10845-021-01885-x [5] Wan J F, Tang S L, Shu Z G, et al. Software-defined industrial Internet of Things in the context of industry 4.0. IEEE Sens J, 2016, 16(20): 7373 [6] Ma N F, Yao X F, Wang K S. Current status and prospect of future internet-oriented wisdom manufacturing. Sci Sin (Technol), 2022, 52(1): 55 doi: 10.1360/SST-2021-0232马南峰, 姚锡凡, 王柯赛. 面向未来互联网的智慧制造研究现状与展望. 中国科学:技术科学, 2022, 52(1):55 doi: 10.1360/SST-2021-0232 [7] Wollschlaeger M, Sauter T, Jasperneite J. The future of industrial communication: Automation networks in the era of the internet of things and industry 4.0. IEEE Ind Electron Mag, 2017, 11(1): 17 doi: 10.1109/MIE.2017.2649104 [8] Pop P, Zarrin B, Barzegaran M, et al. The FORA fog computing platform for industrial IoT. Inf Syst, 2021, 98: 101727 doi: 10.1016/j.is.2021.101727 [9] Sun L, Wang J Q, Lin S J, et al. Research on 5G–TSN joint scheduling mechanism based on radio channel information. J Commun, 2021, 42(12): 65孙雷, 王健全, 林尚静, 等. 基于无线信道信息的5G与TSN联合调度机制研究. 通信学报, 2021, 42(12):65 [10] Liu Q, Shao X, Yang J P, et al. Multiscale modeling and collaborative manufacturing for steelmaking plants. Chin J Eng, 2021, 43(12): 1698刘青, 邵鑫, 杨建平, 等. 炼钢厂多尺度建模与协同制造. 工程科学学报, 2021, 43(12):1698 [11] Zhang L. Application of 5G network in iron and steel industry equipment data fast access platform. Metall Ind Autom, 2021, 45(4): 1 doi: 10.3969/j.issn.1000-7059.2021.04.001张丽. 5G网络在钢铁行业设备数据快速接入平台中的应用. 冶金自动化, 2021, 45(4):1 doi: 10.3969/j.issn.1000-7059.2021.04.001 [12] Alonzo M, Baracca P, Khosravirad S R, et al. Cell-free and user-centric massive MIMO architectures for reliable communications in indoor factory environments. IEEE Open J Commun Soc, 2021, 2: 1390 doi: 10.1109/OJCOMS.2021.3089281 [13] Briglauer W, Stocker V, Whalley J. Public policy targets in EU broadband markets: The role of technological neutrality. Telecommun Policy, 2020, 44(5): 101908 doi: 10.1016/j.telpol.2019.101908 [14] Zhu P K, Yoshida Y, Kanno A, et al. High-fidelity indoor MIMO radio access for 5G and beyond based on legacy multimode fiber and real-time analog-to-digital-compression. Opt Express, 2021, 29(2): 1945 doi: 10.1364/OE.411144 [15] Li B H, Chai X D, Liu Y, et al. Intelligent manufacturing enabled by information and communication technology in industrial environment. Strateg Study CAE, 2022, 24(2): 75李伯虎, 柴旭东, 刘阳, 等. 工业环境下信息通信类技术赋能智能制造研究. 中国工程科学, 2022, 24(2):75 [16] Tian H, He S, Lin S J, et al. Survey on cooperative fusion technologies with perception, communication and control coupled in industrial Internet. J Commun, 2021, 42(10): 211田辉, 贺硕, 林尚静, 等. 工业互联网感知通信控制协同融合技术研究综述. 通信学报, 2021, 42(10):211 [17] Ren L, Jia Z Z, Lai L Y J, et al. Data-driven industrial intelligence: Current status and future directions. Comput Integr Manuf Syst, 2022, 28(7): 1913任磊, 贾子翟, 赖李媛君, 等. 数据驱动的工业智能: 现状与展望. 计算机集成制造系统, 2022, 28(7):1913 [18] Cai Y P, Yao Z C, Li T C. A survey on time-sensitive networking: Standards and state-of-the-art. Chin J Comput, 2021, 44(7): 1378 doi: 10.11897/SP.J.1016.2020.01378蔡岳平, 姚宗辰, 李天驰. 时间敏感网络标准与研究综述. 计算机学报, 2021, 44(7):1378 doi: 10.11897/SP.J.1016.2020.01378 [19] Chai T Y, Liu Q, Ding J L, et al. Perspectives on industrial-internet-driven intelligent optimized manufacturing mode for process industries. Sci Sin (Technol), 2022, 52(1): 14 doi: 10.1360/SST-2021-0405柴天佑, 刘强, 丁进良, 等. 工业互联网驱动的流程工业智能优化制造新模式研究展望. 中国科学:技术科学, 2022, 52(1):14 doi: 10.1360/SST-2021-0405 [20] An M Y, Wang X Y. Boosting the high-quality development of China’s steel industry with intelligent manufacturing. Metall Economy Manag, 2022(2): 30安梦越, 王兴艳. 以智能制造助力中国钢铁行业高质量发展. 冶金经济与管理, 2022(2):30 [21] Zhang B, Wang F Z, Xu L Q. Brief analysis on the current situation and demand of standardization of industrial Internet platform in China. China Qual Stand Rev, 2022(1): 59张斌, 王法中, 许立前. 我国工业互联网平台标准化现状及需求浅析. 中国质量与标准导报, 2022(1):59 [22] Zang J Y, Liu Y F, Wang B C, et al. Technology forecasting and roadmapping of intelligent manufacturing by 2035. J Mech Eng, 2022, 58(4): 285臧冀原, 刘宇飞, 王柏村, 等. 面向2035的智能制造技术预见和路线图研究. 机械工程学报, 2022, 58(4):285 [23] Industrial Internet Industry Alliance. Industrial internet architecture (2.0) [R/OL]. Report Online (2020-04) [2022-08-01]. http://www.aii-alliance.org/upload/202004/0430_162140_875.pdf工业互联网产业联盟. 工业互联网体系架构(版本2.0)[R/OL]. 在线报告(2020-04) [2022-08-01]. http://www.aii-alliance.org/upload/202004/0430_162140_875.pdf [24] Industrial Internet Industry Alliance. Industrial intelligence white paper [R/OL]. Report Online (2020-04) [2022-08-01]. https://tech.sina.com.cn/roll/2020-07-06/doc-iircuyvk2170592.shtml工业互联网产业联盟. 工业智能白皮书 [R/OL]. 在线报告(2020-04) [2022-08-01]. https://tech.sina.com.cn/roll/2020-07-06/doc-iircuyvk2170592.shtml [25] Zheng Z, Zhang K T, Gao X Q. Human-cyber-physical system for production and operation decision optimization in smart steel plants. Sci China Technol Sci, 2022, 65(2): 247 doi: 10.1007/s11431-020-1838-6 [26] 5G Alliance for Connected Industries and Automation. Integration of 5G with time-sensitive networking for industrial communications [EB/OL]. Report Online (2021-01-19) [2022-08-01]. https://5g-acia.org/whitepapers/integration-of-5g-with-time-sensitive-networking-for-industrial-communications/ [27] Zhang Q M, Zheng X M, Zhang S Y. 5G TSN technologies and innovation. ZTE Technol J, 2022, 28(3): 78张启明, 郑兴明, 张寿勇. 5G TSN技术的创新研究. 中兴通讯技术, 2022, 28(3):78 -