Stability control strategy and application of deep pump absorbing well chamber group
-
摘要: 为解决深部泵房硐室群失稳现象突出的问题,以大强煤矿−890水平泵房吸水井硐室群为工程背景,通过理论分析和数值模拟,分析硐室群的破坏原因,对比集约化设计和传统设计对围岩稳定性控制的效果. 基于恒阻大变形(NPR)锚索高恒阻、高延伸率和吸能的特性,建立NPR锚索支护下硐室交岔口围岩能量失稳判据,提出以高预应力NPR锚索+立体桁架为核心的泵房吸水井集约化控制对策,并进行现场应用. 结果表明:相比传统设计,集约化设计简化了硐室布局和施工程序,同时能够减小巷道位移、应力,使塑性区范围减小并趋于均匀化,消除了空间效应;通过NPR锚索的高恒阻大变形和在桁架与围岩间预留的间隙释放围岩变形能,通过NPR锚索的高预应力和立体桁架的强度限制围岩变形,能有效保证巷道稳定;现场应用表明,该对策将围岩变形控制在70 mm以内,应用效果良好,可为类似工程提供参考.Abstract: Deep rock mass is in a complex mechanical environment characterized by high ground stress, high ground temperature, high karst water pressure, and strong mining disturbance, resulting in difficult support and high levels of failure in the pump chamber group. To solve the problem of the instability of the deep pump chamber group, this paper takes the −890-level pump absorbing well chamber group of the Daqiang coal mine as the engineering background. Through theoretical analysis, numerical simulation, and field tests, the reasons for the failure of the chamber group are analyzed, and the effects of intensive design and traditional design on the stability control of the surrounding rock are compared. According to the characteristics of high constant resistance, high elongation, and energy absorption of the negative Poisson’s ratio (NPR) cable, the instability energy criterion of intersection under the NPR cable support is established, where the chamber is stable at KN ≤ 1. The intensive control strategy of the pump absorbing well with a high prestressed NPR cable and three-dimensional truss as the core is presented and applied in the field. The results show that high ground stress, low surrounding rock strength, dense chamber group distribution, unreasonable excavation sequence of the chamber group, and inappropriate support are the main reasons for the failure of the deep pump absorbing well chamber group. Compared with the traditional design, the intensive design simplifies the layout and construction procedure of the chamber by considering the absorbing well, improves the stress conditions of the chamber, reduces the displacement and stress of the roadway, makes the plastic zone range smaller and more uniform, and eliminates the spatial effect. The deformation energy of the surrounding rock is released through the high constant resistance and large deformation of the NPR cable and the reserved gap between the truss and the surrounding rock, and the deformation of the surrounding rock is limited through the application of high prestress to the NPR cable and the strength of the three-dimensional truss material, which allows for the full use of the self-bearing capacity of the surrounding rock and effectively ensures the roadway stability. The field application shows that this strategy can effectively ensure the stability of the chamber group; the deformation of the surrounding rock is controlled within 70 mm, and there is no shedding, cracking, or destruction of the sprayed layer after concrete sealing, which indicates that the technology plays an important role in controlling the stability of the deep roadway and can provide a reference for similar projects.
-
Key words:
- deep /
- chamber group /
- intensive /
- NPR cable /
- stability control
-
表 1 岩层物理力学参数
Table 1. Physical and mechanical parameters of the rock strata
Lithology Elastic modulus/GPa Poisson ratio Cohesion/MPa Friction/(°) Tension/MPa Density/(kg·m−3) Siltstone 7.8 0.23 0.5 21 0.2 2510 Sand-conglomerate 8.5 0.19 0.6 24 1.3 2600 -
参考文献
[1] Cai M F, Brown E T. Challenges in the mining and utilization of deep mineral resources. Engineering, 2017, 3(4): 432 doi: 10.1016/J.ENG.2017.04.027 [2] Xie H P. Research review of the state key research development program of China: Deep rock mechanics and mining theory. J China Coal Soc, 2019, 44(5): 1283 doi: 10.13225/j.cnki.jccs.2019.6038谢和平. 深部岩体力学与开采理论研究进展. 煤炭学报, 2019, 44(5):1283 doi: 10.13225/j.cnki.jccs.2019.6038 [3] He M C. Research progress of deep shaft construction mechanics. J China Coal Soc, 2021, 46(3): 726 doi: 10.13225/j.cnki.jccs.YT21.0124何满潮. 深部建井力学研究进展. 煤炭学报, 2021, 46(3):726 doi: 10.13225/j.cnki.jccs.YT21.0124 [4] He M C, Xie H P, Peng S P, et al. Study on rock mechanics in deep mining engineering. Chin J Rock Mech Eng, 2005, 24(16): 2803 doi: 10.3321/j.issn:1000-6915.2005.16.001何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究. 岩石力学与工程学报, 2005, 24(16):2803 doi: 10.3321/j.issn:1000-6915.2005.16.001 [5] Xin C Y, Gao F, Song L Y, et al. Two strong stability control technology of pump chamber group under deep and complicated conditions. Coal Sci Technol, 2015, 43(8): 23信长瑜, 高飞, 宋浬永, 等. 深部复杂条件下泵房硐室群两强稳定型控制技术. 煤炭科学技术, 2015, 43(8):23 [6] Bi W G, Guo W N, Lin D G. Numerical simulation analysis of surrounding rock support of central pump house in 1000 m-deeper mine. Coal Eng, 2019, 51(5): 129毕卫国, 郭伟娜, 林登阁. 千米深井中央泵房围岩支护数值模拟研究. 煤炭工程, 2019, 51(5):129 [7] Zhang G Y, Sun C L, Xu B, et al. Research on fully-mechanized excavation technology of special underground chamber in Yili No. 4 Mine. Coal Sci Technol, 2020, 48(S2): 7张官禹, 孙成磊, 许波, 等. 伊犁四矿井底车场特殊硐室综掘施工工艺研究. 煤炭科学技术, 2020, 48(S2):7 [8] He M C, Li G F, Ren A W, et al. Analysis of the stability of intersecting chambers in deep soft-rock roadway construction. J China Univ Min Technol, 2008(2): 167 doi: 10.3321/j.issn:1000-1964.2008.02.005何满潮, 李国峰, 任爱武, 等. 深部软岩巷道立体交叉硐室群稳定性分析. 中国矿业大学学报, 2008(2):167 doi: 10.3321/j.issn:1000-1964.2008.02.005 [9] Li S J, Zhang M J, Zhang D Q. Optimization design and supporting technology of deep water pump room in Hemei corporation. Coal Min Technol, 2015, 20(3): 69李世杰, 张明杰, 张大千. 鹤煤公司深部水泵房优化设计与支护技术. 煤矿开采, 2015, 20(3):69 [10] Cai F. Integrated control technology of surrounding stability of pump house absorbing water well chambers in deep. Coal Min Technol, 2017, 22(1): 60 doi: 10.13532/j.cnki.cn11-3677/td.2017.01.014蔡峰. 深部泵房吸水井硐室群围岩稳定性一体化控制技术. 煤矿开采, 2017, 22(1):60 doi: 10.13532/j.cnki.cn11-3677/td.2017.01.014 [11] Huang Y B, Wang Q, Gao H K, et al. Failure mechanism and construction process optimization of deep soft rock chamber group. J China Univ Min Technol, 2021, 50(1): 69黄玉兵, 王琦, 高红科, 等. 深部软岩硐室群破坏机制与施工过程优化. 中国矿业大学学报, 2021, 50(1):69 [12] Wang J, Ma L, Liu P, et al. Study on soft rock cavern groups support technology in deep mine. J Basic Sci Eng, 2023, 31(2): 330王炯, 马磊, 刘鹏, 等. 深井软岩硐室群支护技术研究. 应用基础与工程科学学报, 2023, 31(2):330 [13] Wang Q Z, Xie W B, Jing S G, et al. Instability mechanism and control technology of chamber group surrounding rock in complex structural area. J Min Saf Eng, 2014, 31(2): 263 doi: 10.13545/j.issn1673-3363.2014.02.016王其洲, 谢文兵, 荆升国, 等. 构造复杂区硐室群围岩失稳机理及控制技术研究. 采矿与安全工程学报, 2014, 31(2):263 doi: 10.13545/j.issn1673-3363.2014.02.016 [14] Yang R S, Xue H J, Guo D M, et al. Failure mechanism of surrounding rock of large section chambers in complex rock formations and its control. J China Coal Soc, 2015, 40(10): 2234 doi: 10.13225/j.cnki.jccs.2015.6003杨仁树, 薛华俊, 郭东明, 等. 复杂岩层大断面硐室群围岩破坏机理及控制. 煤炭学报, 2015, 40(10):2234 doi: 10.13225/j.cnki.jccs.2015.6003 [15] Yang J X. Study on failure mechanism and comprehensive strengthening technology of roadways and chambers group at shaft bottom. Coal Sci Technol, 2019, 47(4): 69 doi: 10.13199/j.cnki.cst.2019.04.012杨计先. 井底巷道硐室群破坏机理及综合加固技术研究. 煤炭科学技术, 2019, 47(4):69 doi: 10.13199/j.cnki.cst.2019.04.012 [16] Xie S R, Jiang Z S, Chen D D, et al. Study on zonal cooperative control technology of surrounding rock of super large section soft rock chamber group connected by deep vertical shaft. Adv Civ Eng, 2022 [17] Tan Y L, Fan D Y, Liu X S, et al. Research progress on chain instability control of surrounding rock for super-large section chamber group in deep coal mines. J China Coal Soc, 2022, 47(1): 180谭云亮, 范德源, 刘学生, 等. 煤矿深部超大断面硐室群围岩连锁失稳控制研究进展. 煤炭学报, 2022, 47(1):180 [18] Zhang Y, Sun X M, Zheng Y L, et al. An anti-punching and energy-releasing coupling support technology in deep mining roadway and its application. Chin J Rock Mech Eng, 2019, 38(9): 1860 doi: 10.13722/j.cnki.jrme.2018.1514张勇, 孙晓明, 郑有雷, 等. 深部回采巷道防冲释能耦合支护技术及应用. 岩石力学与工程学报, 2019, 38(9):1860 doi: 10.13722/j.cnki.jrme.2018.1514 [19] Guo Z B, Ren A W, Wang J, et al. Alternative integrated design of pump house chambers in deep soft rocks. J Min Saf Eng, 2009, 26(1): 91 doi: 10.3969/j.issn.1673-3363.2009.01.018郭志飚, 任爱武, 王炯, 等. 深部软岩泵房硐室群集约化设计技术. 采矿与安全工程学报, 2009, 26(1):91 doi: 10.3969/j.issn.1673-3363.2009.01.018 [20] Fan D Y, Liu X S, Tan Y L, et al. Instability energy mechanism of super-large section crossing chambers in deep coal mines. Int J Min Sci Technol, 2022, 32(5): 1075 doi: 10.1016/j.ijmst.2022.06.008 [21] He M C, Li C, Gong W L, et al. Support principles of NPR bolts/cables and control techniques of large deformation. Chin J Rock Mech Eng, 2016, 35(8): 1513 doi: 10.13722/j.cnki.jrme.2015.1246何满潮, 李晨, 宫伟力, 等. NPR锚杆/索支护原理及大变形控制技术. 岩石力学与工程学报, 2016, 35(8):1513 doi: 10.13722/j.cnki.jrme.2015.1246 [22] Gong W L, Zhu D Y, Wang J, et al. Deformation and energy equation verification of NPR anchor cable support roadway based on model test. J Min Saf Eng, 2020, 37(5): 918 doi: 10.13545/j.cnki.jmse.2020.05.007宫伟力, 朱道勇, 王炯, 等. 基于模型试验的NPR锚索支护巷道变形及能量方程验证. 采矿与安全工程学报, 2020, 37(5):918 doi: 10.13545/j.cnki.jmse.2020.05.007 [23] He M C, Gong W L, Wang J, et al. Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance. Int J Rock Mech Min Sci, 2014, 67: 29 doi: 10.1016/j.ijrmms.2014.01.007 [24] He M C, Jing H H, Sun X M. Engineering Mechanics of Soft Rock. Beijing: Science Press, 2002何满潮, 景海河, 孙晓明. 软岩工程力学. 北京: 科学出版社, 2002 [25] Tao Z G, Zhao S, Zhang M X, et al. Numerical simulation research on mechanical properties of constant resistance bolt/cable with large deformation. J Min Saf Eng, 2018, 35(1): 40 doi: 10.13545/j.cnki.jmse.2018.01.006陶志刚, 赵帅, 张明旭, 等. 恒阻大变形锚杆/索力学特性数值模拟研究. 采矿与安全工程学报, 2018, 35(1):40 doi: 10.13545/j.cnki.jmse.2018.01.006 [26] Tao Z G, Luo S L, Li M N, et al. Optimization of large deformation control parameters of layered slate tunnels based on numerical simulation and field test. Chin J Rock Mech Eng, 2020, 39(3): 491 doi: 10.13722/j.cnki.jrme.2019.0841陶志刚, 罗森林, 李梦楠, 等. 层状板岩隧道大变形控制参数优化数值模拟分析及现场试验. 岩石力学与工程学报, 2020, 39(3):491 doi: 10.13722/j.cnki.jrme.2019.0841 -