• 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深部泵房吸水井硐室群稳定性控制对策及应用

孙晓明 朱明群 张勇 徐爱国 崔力 缪澄宇 赵成伟 张尚坤

孙晓明, 朱明群, 张勇, 徐爱国, 崔力, 缪澄宇, 赵成伟, 张尚坤. 深部泵房吸水井硐室群稳定性控制对策及应用[J]. 工程科学学报, 2023, 45(10): 1693-1703. doi: 10.13374/j.issn2095-9389.2022.08.22.001
引用本文: 孙晓明, 朱明群, 张勇, 徐爱国, 崔力, 缪澄宇, 赵成伟, 张尚坤. 深部泵房吸水井硐室群稳定性控制对策及应用[J]. 工程科学学报, 2023, 45(10): 1693-1703. doi: 10.13374/j.issn2095-9389.2022.08.22.001
SUN Xiaoming, ZHU Mingqun, ZHANG Yong, XU Aiguo, CUI Li, MIAO Chengyu, ZHAO Chengwei, ZHANG Shangkun. Stability control strategy and application of deep pump absorbing well chamber group[J]. Chinese Journal of Engineering, 2023, 45(10): 1693-1703. doi: 10.13374/j.issn2095-9389.2022.08.22.001
Citation: SUN Xiaoming, ZHU Mingqun, ZHANG Yong, XU Aiguo, CUI Li, MIAO Chengyu, ZHAO Chengwei, ZHANG Shangkun. Stability control strategy and application of deep pump absorbing well chamber group[J]. Chinese Journal of Engineering, 2023, 45(10): 1693-1703. doi: 10.13374/j.issn2095-9389.2022.08.22.001

深部泵房吸水井硐室群稳定性控制对策及应用

doi: 10.13374/j.issn2095-9389.2022.08.22.001
基金项目: 国家自然科学基金资助项目(51874311, 51904306);中央高校基本科研业务费专项资金资助项目(2022YJSSB03)
详细信息
    通讯作者:

    E-mail:cumtbzy558@163.com

  • 中图分类号: TD354

Stability control strategy and application of deep pump absorbing well chamber group

More Information
  • 摘要: 为解决深部泵房硐室群失稳现象突出的问题,以大强煤矿−890水平泵房吸水井硐室群为工程背景,通过理论分析和数值模拟,分析硐室群的破坏原因,对比集约化设计和传统设计对围岩稳定性控制的效果. 基于恒阻大变形(NPR)锚索高恒阻、高延伸率和吸能的特性,建立NPR锚索支护下硐室交岔口围岩能量失稳判据,提出以高预应力NPR锚索+立体桁架为核心的泵房吸水井集约化控制对策,并进行现场应用. 结果表明:相比传统设计,集约化设计简化了硐室布局和施工程序,同时能够减小巷道位移、应力,使塑性区范围减小并趋于均匀化,消除了空间效应;通过NPR锚索的高恒阻大变形和在桁架与围岩间预留的间隙释放围岩变形能,通过NPR锚索的高预应力和立体桁架的强度限制围岩变形,能有效保证巷道稳定;现场应用表明,该对策将围岩变形控制在70 mm以内,应用效果良好,可为类似工程提供参考.

     

  • 图  1  顶底板岩性柱状图

    Figure  1.  Column chart of roof strata

    图  2  传统设计和集约化设计开挖顺序

    Figure  2.  Traditional and intensive design excavation sequence

    图  3  断面位置图

    Figure  3.  Section location map

    图  4  不同断面的围岩位移和应力云图. (a) 断面I; (b) 断面II; (c) 断面III

    Figure  4.  Cloud map of surrounding rock displacement and stress in different sections: (a) section I; (b) section II; (c) section III

    图  5  不同断面的围岩塑性区分布图

    Figure  5.  Distribution map of the surrounding rock plastic zone in different sections

    图  6  交岔口围岩分区[20]

    Figure  6.  Intersection surrounding rock partition[20]

    图  7  NPR锚索

    Figure  7.  NPR cable

    图  8  NPR锚索的力−变形曲线[22]

    Figure  8.  Force–deformation curve of the NPR cable[22]

    图  9  立体桁架

    Figure  9.  Three-dimensional truss

    图  10  支护机理

    Figure  10.  Supporting mechanism

    图  11  耦合支护数值模型

    Figure  11.  Numerical model of coupling support

    图  12  测点位置图

    Figure  12.  Measurement point location map

    图  13  耦合支护后不同断面围岩位移和应力云图

    Figure  13.  Cloud map of surrounding rock displacement and stress in different sections after coupling support

    图  14  耦合支护后不同断面监测点位移曲线. (a)垂直位移; (b)水平位移

    Figure  14.  Displacement curves of monitoring points in different sections after coupling support: (a) vertical displacement; (b) horizontal displacement

    图  15  耦合支护后不同断面处围岩塑性区分布图

    Figure  15.  Distribution map of the surrounding rock plastic zone in different sections after coupling support

    图  16  巷道围岩位移监测曲线. (a) 泵房; (b) 壁龛

    Figure  16.  Displacement monitoring curve of the roadway surrounding rock: (a) pump house; (b) stable

    表  1  岩层物理力学参数

    Table  1.   Physical and mechanical parameters of the rock strata

    LithologyElastic modulus/GPaPoisson ratioCohesion/MPaFriction/(°)Tension/MPaDensity/(kg·m−3)
    Siltstone7.80.230.5210.22510
    Sand-conglomerate8.50.190.6241.32600
    下载: 导出CSV
  • [1] Cai M F, Brown E T. Challenges in the mining and utilization of deep mineral resources. Engineering, 2017, 3(4): 432 doi: 10.1016/J.ENG.2017.04.027
    [2] Xie H P. Research review of the state key research development program of China: Deep rock mechanics and mining theory. J China Coal Soc, 2019, 44(5): 1283 doi: 10.13225/j.cnki.jccs.2019.6038

    谢和平. 深部岩体力学与开采理论研究进展. 煤炭学报, 2019, 44(5):1283 doi: 10.13225/j.cnki.jccs.2019.6038
    [3] He M C. Research progress of deep shaft construction mechanics. J China Coal Soc, 2021, 46(3): 726 doi: 10.13225/j.cnki.jccs.YT21.0124

    何满潮. 深部建井力学研究进展. 煤炭学报, 2021, 46(3):726 doi: 10.13225/j.cnki.jccs.YT21.0124
    [4] He M C, Xie H P, Peng S P, et al. Study on rock mechanics in deep mining engineering. Chin J Rock Mech Eng, 2005, 24(16): 2803 doi: 10.3321/j.issn:1000-6915.2005.16.001

    何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究. 岩石力学与工程学报, 2005, 24(16):2803 doi: 10.3321/j.issn:1000-6915.2005.16.001
    [5] Xin C Y, Gao F, Song L Y, et al. Two strong stability control technology of pump chamber group under deep and complicated conditions. Coal Sci Technol, 2015, 43(8): 23

    信长瑜, 高飞, 宋浬永, 等. 深部复杂条件下泵房硐室群两强稳定型控制技术. 煤炭科学技术, 2015, 43(8):23
    [6] Bi W G, Guo W N, Lin D G. Numerical simulation analysis of surrounding rock support of central pump house in 1000 m-deeper mine. Coal Eng, 2019, 51(5): 129

    毕卫国, 郭伟娜, 林登阁. 千米深井中央泵房围岩支护数值模拟研究. 煤炭工程, 2019, 51(5):129
    [7] Zhang G Y, Sun C L, Xu B, et al. Research on fully-mechanized excavation technology of special underground chamber in Yili No. 4 Mine. Coal Sci Technol, 2020, 48(S2): 7

    张官禹, 孙成磊, 许波, 等. 伊犁四矿井底车场特殊硐室综掘施工工艺研究. 煤炭科学技术, 2020, 48(S2):7
    [8] He M C, Li G F, Ren A W, et al. Analysis of the stability of intersecting chambers in deep soft-rock roadway construction. J China Univ Min Technol, 2008(2): 167 doi: 10.3321/j.issn:1000-1964.2008.02.005

    何满潮, 李国峰, 任爱武, 等. 深部软岩巷道立体交叉硐室群稳定性分析. 中国矿业大学学报, 2008(2):167 doi: 10.3321/j.issn:1000-1964.2008.02.005
    [9] Li S J, Zhang M J, Zhang D Q. Optimization design and supporting technology of deep water pump room in Hemei corporation. Coal Min Technol, 2015, 20(3): 69

    李世杰, 张明杰, 张大千. 鹤煤公司深部水泵房优化设计与支护技术. 煤矿开采, 2015, 20(3):69
    [10] Cai F. Integrated control technology of surrounding stability of pump house absorbing water well chambers in deep. Coal Min Technol, 2017, 22(1): 60 doi: 10.13532/j.cnki.cn11-3677/td.2017.01.014

    蔡峰. 深部泵房吸水井硐室群围岩稳定性一体化控制技术. 煤矿开采, 2017, 22(1):60 doi: 10.13532/j.cnki.cn11-3677/td.2017.01.014
    [11] Huang Y B, Wang Q, Gao H K, et al. Failure mechanism and construction process optimization of deep soft rock chamber group. J China Univ Min Technol, 2021, 50(1): 69

    黄玉兵, 王琦, 高红科, 等. 深部软岩硐室群破坏机制与施工过程优化. 中国矿业大学学报, 2021, 50(1):69
    [12] Wang J, Ma L, Liu P, et al. Study on soft rock cavern groups support technology in deep mine. J Basic Sci Eng, 2023, 31(2): 330

    王炯, 马磊, 刘鹏, 等. 深井软岩硐室群支护技术研究. 应用基础与工程科学学报, 2023, 31(2):330
    [13] Wang Q Z, Xie W B, Jing S G, et al. Instability mechanism and control technology of chamber group surrounding rock in complex structural area. J Min Saf Eng, 2014, 31(2): 263 doi: 10.13545/j.issn1673-3363.2014.02.016

    王其洲, 谢文兵, 荆升国, 等. 构造复杂区硐室群围岩失稳机理及控制技术研究. 采矿与安全工程学报, 2014, 31(2):263 doi: 10.13545/j.issn1673-3363.2014.02.016
    [14] Yang R S, Xue H J, Guo D M, et al. Failure mechanism of surrounding rock of large section chambers in complex rock formations and its control. J China Coal Soc, 2015, 40(10): 2234 doi: 10.13225/j.cnki.jccs.2015.6003

    杨仁树, 薛华俊, 郭东明, 等. 复杂岩层大断面硐室群围岩破坏机理及控制. 煤炭学报, 2015, 40(10):2234 doi: 10.13225/j.cnki.jccs.2015.6003
    [15] Yang J X. Study on failure mechanism and comprehensive strengthening technology of roadways and chambers group at shaft bottom. Coal Sci Technol, 2019, 47(4): 69 doi: 10.13199/j.cnki.cst.2019.04.012

    杨计先. 井底巷道硐室群破坏机理及综合加固技术研究. 煤炭科学技术, 2019, 47(4):69 doi: 10.13199/j.cnki.cst.2019.04.012
    [16] Xie S R, Jiang Z S, Chen D D, et al. Study on zonal cooperative control technology of surrounding rock of super large section soft rock chamber group connected by deep vertical shaft. Adv Civ Eng, 2022
    [17] Tan Y L, Fan D Y, Liu X S, et al. Research progress on chain instability control of surrounding rock for super-large section chamber group in deep coal mines. J China Coal Soc, 2022, 47(1): 180

    谭云亮, 范德源, 刘学生, 等. 煤矿深部超大断面硐室群围岩连锁失稳控制研究进展. 煤炭学报, 2022, 47(1):180
    [18] Zhang Y, Sun X M, Zheng Y L, et al. An anti-punching and energy-releasing coupling support technology in deep mining roadway and its application. Chin J Rock Mech Eng, 2019, 38(9): 1860 doi: 10.13722/j.cnki.jrme.2018.1514

    张勇, 孙晓明, 郑有雷, 等. 深部回采巷道防冲释能耦合支护技术及应用. 岩石力学与工程学报, 2019, 38(9):1860 doi: 10.13722/j.cnki.jrme.2018.1514
    [19] Guo Z B, Ren A W, Wang J, et al. Alternative integrated design of pump house chambers in deep soft rocks. J Min Saf Eng, 2009, 26(1): 91 doi: 10.3969/j.issn.1673-3363.2009.01.018

    郭志飚, 任爱武, 王炯, 等. 深部软岩泵房硐室群集约化设计技术. 采矿与安全工程学报, 2009, 26(1):91 doi: 10.3969/j.issn.1673-3363.2009.01.018
    [20] Fan D Y, Liu X S, Tan Y L, et al. Instability energy mechanism of super-large section crossing chambers in deep coal mines. Int J Min Sci Technol, 2022, 32(5): 1075 doi: 10.1016/j.ijmst.2022.06.008
    [21] He M C, Li C, Gong W L, et al. Support principles of NPR bolts/cables and control techniques of large deformation. Chin J Rock Mech Eng, 2016, 35(8): 1513 doi: 10.13722/j.cnki.jrme.2015.1246

    何满潮, 李晨, 宫伟力, 等. NPR锚杆/索支护原理及大变形控制技术. 岩石力学与工程学报, 2016, 35(8):1513 doi: 10.13722/j.cnki.jrme.2015.1246
    [22] Gong W L, Zhu D Y, Wang J, et al. Deformation and energy equation verification of NPR anchor cable support roadway based on model test. J Min Saf Eng, 2020, 37(5): 918 doi: 10.13545/j.cnki.jmse.2020.05.007

    宫伟力, 朱道勇, 王炯, 等. 基于模型试验的NPR锚索支护巷道变形及能量方程验证. 采矿与安全工程学报, 2020, 37(5):918 doi: 10.13545/j.cnki.jmse.2020.05.007
    [23] He M C, Gong W L, Wang J, et al. Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance. Int J Rock Mech Min Sci, 2014, 67: 29 doi: 10.1016/j.ijrmms.2014.01.007
    [24] He M C, Jing H H, Sun X M. Engineering Mechanics of Soft Rock. Beijing: Science Press, 2002

    何满潮, 景海河, 孙晓明. 软岩工程力学. 北京: 科学出版社, 2002
    [25] Tao Z G, Zhao S, Zhang M X, et al. Numerical simulation research on mechanical properties of constant resistance bolt/cable with large deformation. J Min Saf Eng, 2018, 35(1): 40 doi: 10.13545/j.cnki.jmse.2018.01.006

    陶志刚, 赵帅, 张明旭, 等. 恒阻大变形锚杆/索力学特性数值模拟研究. 采矿与安全工程学报, 2018, 35(1):40 doi: 10.13545/j.cnki.jmse.2018.01.006
    [26] Tao Z G, Luo S L, Li M N, et al. Optimization of large deformation control parameters of layered slate tunnels based on numerical simulation and field test. Chin J Rock Mech Eng, 2020, 39(3): 491 doi: 10.13722/j.cnki.jrme.2019.0841

    陶志刚, 罗森林, 李梦楠, 等. 层状板岩隧道大变形控制参数优化数值模拟分析及现场试验. 岩石力学与工程学报, 2020, 39(3):491 doi: 10.13722/j.cnki.jrme.2019.0841
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  411
  • HTML全文浏览量:  76
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-22
  • 网络出版日期:  2022-09-29
  • 刊出日期:  2023-10-25

目录

    /

    返回文章
    返回