• 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动载下层状复合岩石能量耗散及断裂特征研究

李杨 王雁冰 付代睿 吴后为 刘珍

李杨, 王雁冰, 付代睿, 吴后为, 刘珍. 动载下层状复合岩石能量耗散及断裂特征研究[J]. 工程科学学报, 2023, 45(11): 1833-1846. doi: 10.13374/j.issn2095-9389.2022.09.18.011
引用本文: 李杨, 王雁冰, 付代睿, 吴后为, 刘珍. 动载下层状复合岩石能量耗散及断裂特征研究[J]. 工程科学学报, 2023, 45(11): 1833-1846. doi: 10.13374/j.issn2095-9389.2022.09.18.011
LI Yang, WANG Yanbing, FU Dairui, WU Houwei, LIU Zhen. Energy dissipation and fracture characteristics of composite layered rock under dynamic load[J]. Chinese Journal of Engineering, 2023, 45(11): 1833-1846. doi: 10.13374/j.issn2095-9389.2022.09.18.011
Citation: LI Yang, WANG Yanbing, FU Dairui, WU Houwei, LIU Zhen. Energy dissipation and fracture characteristics of composite layered rock under dynamic load[J]. Chinese Journal of Engineering, 2023, 45(11): 1833-1846. doi: 10.13374/j.issn2095-9389.2022.09.18.011

动载下层状复合岩石能量耗散及断裂特征研究

doi: 10.13374/j.issn2095-9389.2022.09.18.011
基金项目: 国家重点研发计划资助项目(2021YFC2902103);国家自然科学基金重点资助项目(51934001);中央高校基本科研业务费专项资金(2023JCCXLJ02)
详细信息
    通讯作者:

    E-mail: wangyanbing@cumtb.edu.cn

  • 中图分类号: TD235.3

Energy dissipation and fracture characteristics of composite layered rock under dynamic load

More Information
  • 摘要: 利用砂岩、大理岩、花岗岩制作6种不同组合方式的层状复合岩石,采用分离式霍普金森压杆试验系统,对不同组合方式的层状岩石进行动态冲击试验,利用高速相机记录其破坏形态,分析复合岩石材料的动态断裂模式、波阻抗效应以及能量耗散规律,探究不同复合岩石试件的动能及断裂能关系. 利用离散格子弹簧模型模拟复合岩石试件的动态断裂过程,分析复合试件的应力波传播特性及应力、损伤演化规律. 研究结果表明:复合岩石材料的动态断裂特征与上下层材料具有相关性,当下层材料动态起裂韧度较低时,裂纹从起裂至扩展到岩石胶结面历时较短. 上层材料对于复合岩石的应力传导作用具有较大的相关性,上层材料密度越大,更有利于透射波传递,应力传导效果越好,而下层材料与上层材料密度相差越大,胶结面上下端应力差越大;受波阻抗效应影响,复合岩石试件应力波的传播行为具有明显差异,波阻抗越大应力波传播速度越快,透射系数越大,产生更多的透射能;复合岩石试件的耗散能时密度、动能及断裂能与上下层岩石材料的密度有关,下层材料不变,上层材料密度越大时,耗散能时密度及断裂能更小,试件完全断裂时获得较大的动能.

     

  • 图  1  复合岩石试件示意图. (a) SD试件;(b) DS试件;(c) SH试件;(d) HS试件;(e) DH试件;(f) HD试件

    Figure  1.  Schematic of the composite rock specimens: (a) SD specimen; (b) DS specimen; (c) SH specimen; (d) HS specimen; (e) DH specimen; (f) HD specimen

    图  2  SD试件制作过程. (a)砂岩NSCB试件;(b)大理岩NSCB试件;(c)SD试件组合

    Figure  2.  Manufacturing process of the SD specimens: (a) sandstone NSCB specimens; (b) marble NSCB specimen; (c) SD specimen combination

    图  3  复合岩石试件实物图. (a) SD试件;(b) DS试件;(c) SH试件;(d) HS试件;(e) DH试件;(f) HD试件

    Figure  3.  Photographs of the composite rock specimens: (a) SD specimen; (b) DS specimen; (c) SH specimen; (d) HS specimen; (e) DH specimen; (f) HD specimen

    图  4  颗粒及弹簧韧带. (a)法向和切向弹簧;(b)作用在颗粒上的力

    Figure  4.  Granular and spring ligaments: (a) normal and tangential springs; (b) force acting on particles

    图  5  不同复合岩石试件模型. (a) SD试件;(b) DS试件;(c) SH试件;(d) HS试件;(e) DH试件;(f) HD试件

    Figure  5.  Models of the composite rock specimens: (a) SD specimen; (b) DS specimen; (c) SH specimen; (d) HS specimen; (e) DH specimen; (f) HD specimen

    图  6  模型边界条件及监测点的设置

    Figure  6.  Boundary conditions of the model and setting of the monitoring points

    图  7  复合试件的动态断裂过程. (a) SD试件;(b) DS试件;(c) SH试件;(d) HS试件;(e) DH试件;(f) HD试件

    Figure  7.  Dynamic fracture process of the composite rock specimens: (a) SD specimen; (b) DS specimen; (c) SH specimen; (d) HS specimen; (e) DH specimen; (f) HD specimen

    图  8  复合岩石试件透射系数变化

    Figure  8.  Variation in the transmission coefficient of the composite rock specimens

    图  9  复合岩石试件的透射能流密度曲线

    Figure  9.  Transmission energy flow density curve of the composite rock specimens

    图  10  复合岩石试件的耗散能时密度曲线

    Figure  10.  Density curve of the composite rock specimens at dissipated energy

    图  11  复合试件动能(a)及断裂能(b)占比

    Figure  11.  Ratio of the kinetic energy (a) and fracture energy (b) of the composite rock specimens

    图  12  复合试件动态断裂模拟过程. (a) SD试件;(b) DS试件;(c) SH试件;(d) HS试件;(e) DH试件;(f) HD试件

    Figure  12.  Dynamic fracture simulation of the composite rock specimens: (a) SD specimen; (b) DS specimen; (c) SH specimen; (d) HS specimen; (e) DH specimen; (f) HD specimen

    图  13  不同复合试件应力波传播云图. (a) DS试件; (b) SD试件; (c) DH试件; (d) HD试件; (e) SH试件; (f) HS试件

    Figure  13.  Stress wave propagation cloud diagrams of the composite rock specimens: (a) DS specimen; (b) SD specimen; (c) DH specimen; (d) HD specimen; (e) SH specimen; (f) HS specimen

    图  14  不同复合试件应力波传播速度

    Figure  14.  Stress wave propagation velocity of the composite rock specimens

    图  15  复合试件胶结面两端监测点应力时程曲线. (a) DS试件; (b) SD试件; (c) DH试件; (d) HD试件; (e) SH试件; (f) HS试件

    Figure  15.  Stress time–history curves of monitoring points at both ends of the cemented surface of the composite rock specimens: (a) DS specimen; (b) SD specimen; (c) DH specimen; (d) HD specimen; (e) SH specimen; (f) HS specimen

    表  1  试验材料物理力学参数

    Table  1.   Physical and mechanical parameters of the test materials

    Test materialdensity/(kg·m³)Elastic modulus/GPaPoisson’s ratio
    Sandstone26004.60.24
    Marble25003.00.3
    Granite300018.40.2
    下载: 导出CSV

    表  2  复合试件耗散能、动能及断裂能

    Table  2.   Dissipated energy, kinetic energy, and fracture energy of the composite rock specimens

    Specimen Dissipated energy, ED/(kJ·m−3·s−1) Kinetic energy, EK/(kJ·m−3·s−1) Fracture energy, EFD/(kJ·m−3·s−1)
    DS 19.14 0.99 18.16
    SD 16.03 2.82 13.21
    DH 17.63 2.45 15.19
    HD 13.23 3.73 9.49
    SH 14.88 3.00 11.88
    HS 12.08 4.66 7.42
    下载: 导出CSV
  • [1] Ma Q, Tan Y L, Liu X S, et al. Experimental and numerical simulation of loading rate effects on failure and strain energy characteristics of coal-rock composite samples. J Cent South Univ, 2021, 28(10): 3207 doi: 10.1007/s11771-021-4831-6
    [2] Song H Q, Zuo J P, Liu H Y, et al. The strength characteristics and progressive failure mechanism of soft rock-coal combination samples with consideration given to interface effects. Int J Rock Mech Min Sci, 2021, 138: 104593 doi: 10.1016/j.ijrmms.2020.104593
    [3] Teng J Y, Tang J X, Wang J B, et al. The evolution law of the damage of bedded composite rock and its fractal characteristics. Chin J Rock Mech Eng, 2018, 37(S1): 3263

    腾俊洋, 唐建新, 王进博, 等. 层状复合岩体损伤演化规律及分形特征. 岩石力学与工程学报, 2018, 37(S1):3263
    [4] Yu Y Q, Hu M Y, Yang X L, et al. Similarity simulation of bedded composite rock. Met Mine, 2009(1): 21

    余永强, 胡明研, 杨小林, 等. 层状复合岩体相似模拟的试验研究. 金属矿山, 2009(1):21
    [5] Liu X Y, Ye Y C, Wang Q H, et al. Mechanical properties of similar material specimens of composite rock masses with different strengths under uniaxial compression. Rock Soil Mech, 2017, 38(S2): 183

    刘晓云, 叶义成, 王其虎, 等. 单轴压缩下不同强度组合复合岩体相似材料试件力学特性研究. 岩土力学, 2017, 38(S2):183
    [6] Li A, Shao G J, Fan H L, et al. Investigation of mechanical properties of soft and hard interbedded composite rock mass based on meso-level heterogeneity. Chin J Rock Mech Eng, 2014, 33(S1): 3042

    李昂, 邵国建, 范华林, 等. 基于细观层次的软硬互层状复合岩体力学特性研究. 岩石力学与工程学报, 2014, 33(S1):3042
    [7] Zhou H, Song M, Zhang C Q, et al. Effect of confining pressure on mechanical properties of horizontal layered composite rock. Rock Soil Mech, 2019, 40(2): 465

    周辉, 宋明, 张传庆, 等. 水平层状复合岩体变形破坏特征的围压效应研究. 岩土力学, 2019, 40(2):465
    [8] Wang T, Ma Z G, Gong P, et al. Analysis of failure characteristics and strength criterion of coal-rock combined body with different height ratios. Adv Civ Eng, 2020, 2020: 1
    [9] Guo D M, Zuo J P, Zhang Y, et al. Research on strength and failure mechanism of deep coal-rock combination bodies of different inclined angles. Rock Soil Mech, 2011, 32(5): 1333

    郭东明, 左建平, 张毅, 等. 不同倾角组合煤岩体的强度与破坏机制研究. 岩土力学, 2011, 32(5):1333
    [10] Yin G Z, Li X, Lu J, et al. A failure criterion for layered composite rock under true triaxial stress conditions. Chin J Rock Mech Eng, 2017, 36(2): 261

    尹光志, 李星, 鲁俊, 等. 真三轴应力条件下层状复合岩石破坏准则. 岩石力学与工程学报, 2017, 36(2):261
    [11] Liu Y S, Zhan X C, Qiu C C. Study on mechanical properties of layered composite rock under triaxial compression. J East China Jiaotong Univ, 2021, 38(3): 1

    刘永胜, 詹学才, 邱传传. 层状复合岩石三轴压缩力学性能研究. 华东交通大学学报, 2021, 38(3):1
    [12] Zhu C J, Ma C, Zhou J X, et al. Mechanical properties and failure characteristics of composite coal and rock mass under dynamic and static loading. J China Coal Soc, 2021, 46(S2): 817

    朱传杰, 马聪, 周靖轩, 等. 动静载荷耦合作用下复合煤岩体的力学特性及破坏特征. 煤炭学报, 2021, 46(S2):817
    [13] Du C C, Wen S, Kong Q M. Tests for dynamic mechanical properties of composite rock samples under 1-D dynamic-static combined loading. J Vib Shock, 2021, 40(21): 168

    杜超超, 温森, 孔庆梅. 一维动静组合加载下复合岩样动态力学特性试验研究. 振动与冲击, 2021, 40(21):168
    [14] Wen S, Zhang C S, Chang Y L, et al. Dynamic compression characteristics of layered rock mass of significant strength changes in adjacent layers. J Rock Mech Geotech Eng, 2020, 12(2): 353 doi: 10.1016/j.jrmge.2019.09.003
    [15] Yang R S, Li W Y, Fang S Z, et al. Experimental study on impact dynamic characteristics of layered composite rocks. Chin J Rock Mech Eng, 2019, 38(9): 1747

    杨仁树, 李炜煜, 方士正, 等. 层状复合岩体冲击动力学特性试验研究. 岩石力学与工程学报, 2019, 38(9):1747
    [16] Yue Z W, Song Y, Chen B, et al. A study on the behaviors of dynamic fracture in layered rocks under impact loading. J Vib Shock, 2017, 36(12): 223

    岳中文, 宋耀, 陈彪, 等. 冲击载荷下层状岩体动态断裂行为的模拟试验研究. 振动与冲击, 2017, 36(12):223
    [17] Li N N, Li J C, Li H B, et al. Shpb experiment on influence of contact area of joints on propagation of stress wave. Chin J Rock Mech Eng, 2015, 34(10): 1994

    李娜娜, 李建春, 李海波, 等. 节理接触面对应力波传播影响的SHPB试验研究. 岩石力学与工程学报, 2015, 34(10):1994
    [18] Li X B. Rock Dynamics Fundamentals and Applications. Beijing: Science Press, 2014

    李夕兵. 岩石动力学基础与应用. 北京:科学出版社, 2014
    [19] Pan B, Wang X G, Xu Z Y, et al. Research on the effect of joint angle on dynamic responses of rock materials. Chin J Rock Mech Eng, 2021, 40(3): 566

    潘博, 汪旭光, 徐振洋, 等. 节理角度对岩石材料的动态响应影响研究. 岩石力学与工程学报, 2021, 40(3):566
    [20] Chen R, Xia K, Dai F, et al. Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing. Eng Fract Mech, 2009, 76(9): 1268 doi: 10.1016/j.engfracmech.2009.02.001
    [21] Zhao G. Development of Micro-Macro Continuum-Discontinuum Coupled Numerical Method [Dissertation]. Switzerland: Ecole Polytechnique Federale de Lausanne, 2010
    [22] Zhao G F, Fang J N, Zhao J A. A 3D distinct lattice spring model for elasticity and dynamic failure. Int J Numer Anal Meth Geomech, 2011, 35(8): 859 doi: 10.1002/nag.930
    [23] Zhao Y X, Zhao G F, Jiang Y D, et al. Effects of bedding on the dynamic indirect tensile strength of coal: Laboratory experiments and numerical simulation. Int J Coal Geol, 2014, 132: 81 doi: 10.1016/j.coal.2014.08.007
    [24] Zhao Y X, Zhao G F, Jiang Y D. Experimental and numerical modelling investigation on fracturing in coal under impact loads. Int J Fract, 2013, 183: 63 doi: 10.1007/s10704-013-9876-6
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  522
  • HTML全文浏览量:  102
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-18
  • 网络出版日期:  2023-03-06
  • 刊出日期:  2023-11-01

目录

    /

    返回文章
    返回