Energy dissipation and fracture characteristics of composite layered rock under dynamic load
-
摘要: 利用砂岩、大理岩、花岗岩制作6种不同组合方式的层状复合岩石,采用分离式霍普金森压杆试验系统,对不同组合方式的层状岩石进行动态冲击试验,利用高速相机记录其破坏形态,分析复合岩石材料的动态断裂模式、波阻抗效应以及能量耗散规律,探究不同复合岩石试件的动能及断裂能关系. 利用离散格子弹簧模型模拟复合岩石试件的动态断裂过程,分析复合试件的应力波传播特性及应力、损伤演化规律. 研究结果表明:复合岩石材料的动态断裂特征与上下层材料具有相关性,当下层材料动态起裂韧度较低时,裂纹从起裂至扩展到岩石胶结面历时较短. 上层材料对于复合岩石的应力传导作用具有较大的相关性,上层材料密度越大,更有利于透射波传递,应力传导效果越好,而下层材料与上层材料密度相差越大,胶结面上下端应力差越大;受波阻抗效应影响,复合岩石试件应力波的传播行为具有明显差异,波阻抗越大应力波传播速度越快,透射系数越大,产生更多的透射能;复合岩石试件的耗散能时密度、动能及断裂能与上下层岩石材料的密度有关,下层材料不变,上层材料密度越大时,耗散能时密度及断裂能更小,试件完全断裂时获得较大的动能.Abstract: Six combinations of layered composite rocks were prepared using sandstone, dali rock, and granite. The composite rock specimens underwent a dynamic impact test using the separated Hopkinson pressure rod test system, and the failure patterns of the specimens were recorded using high-speed cameras. The dynamic fracture mode, wave impedance effect, and energy dissipation nature of these composite rock specimens were analyzed, and the relationship between their kinetic energy and fracture energy was explored. The discrete lattice spring model was used to simulate the dynamic fracture process of the composite rock specimens, and the stress wave propagation characteristics and stress and damage evolution nature of the composite specimens were analyzed. The results show that the dynamic fracture characteristics of composite rock materials are strongly influenced by the uppermost and lowermost layer materials. When the dynamic cracking toughness of the material in the lower layer is low, the crack can maintain a high propagation speed and requires a short time from initiation to expansion to the rock cemented surface. The upper layer material has a greater influence on the stress conduction of the composite rock specimen. The overall transmission capacity depends on the upper layer material such that the greater its density, the more conducive it is to wave transmission and the better the stress conduction. The greater the difference in the densities of the lower and upper layer materials, the greater the difference between the stresses at the upper and lower ends of the rock cemented surface. Wave impedance has a significant effect on the propagation behavior of the stress wave. The propagation speed of the stress wave in the composite specimen is influenced by the porosity and density of the material. The larger the wave impedance, the faster the propagation speed of the stress wave, the larger the transmission coefficient, and the higher the energy transmitted. When energy is dissipated, the density, kinetic energy, and fracture energy of the composite rock specimen are influenced by the densities of the materials in the upper and lower layers. If the lower layer material is unchanged, a higher density of the upper layer material results in a smaller density and fracture energy when the energy is dissipated, yielding more kinetic energy when the specimen is completely fractured. When the upper layer material remains unchanged and the density of the lower material is increased, the cutting tip is more likely to crack, and the density and fracture energy are smaller when the energy is dissipated.
-
图 15 复合试件胶结面两端监测点应力时程曲线. (a) DS试件; (b) SD试件; (c) DH试件; (d) HD试件; (e) SH试件; (f) HS试件
Figure 15. Stress time–history curves of monitoring points at both ends of the cemented surface of the composite rock specimens: (a) DS specimen; (b) SD specimen; (c) DH specimen; (d) HD specimen; (e) SH specimen; (f) HS specimen
表 1 试验材料物理力学参数
Table 1. Physical and mechanical parameters of the test materials
Test material density/(kg·m–³) Elastic modulus/GPa Poisson’s ratio Sandstone 2600 4.6 0.24 Marble 2500 3.0 0.3 Granite 3000 18.4 0.2 表 2 复合试件耗散能、动能及断裂能
Table 2. Dissipated energy, kinetic energy, and fracture energy of the composite rock specimens
Specimen Dissipated energy, ED/(kJ·m−3·s−1) Kinetic energy, EK/(kJ·m−3·s−1) Fracture energy, EFD/(kJ·m−3·s−1) DS 19.14 0.99 18.16 SD 16.03 2.82 13.21 DH 17.63 2.45 15.19 HD 13.23 3.73 9.49 SH 14.88 3.00 11.88 HS 12.08 4.66 7.42 -
参考文献
[1] Ma Q, Tan Y L, Liu X S, et al. Experimental and numerical simulation of loading rate effects on failure and strain energy characteristics of coal-rock composite samples. J Cent South Univ, 2021, 28(10): 3207 doi: 10.1007/s11771-021-4831-6 [2] Song H Q, Zuo J P, Liu H Y, et al. The strength characteristics and progressive failure mechanism of soft rock-coal combination samples with consideration given to interface effects. Int J Rock Mech Min Sci, 2021, 138: 104593 doi: 10.1016/j.ijrmms.2020.104593 [3] Teng J Y, Tang J X, Wang J B, et al. The evolution law of the damage of bedded composite rock and its fractal characteristics. Chin J Rock Mech Eng, 2018, 37(S1): 3263腾俊洋, 唐建新, 王进博, 等. 层状复合岩体损伤演化规律及分形特征. 岩石力学与工程学报, 2018, 37(S1):3263 [4] Yu Y Q, Hu M Y, Yang X L, et al. Similarity simulation of bedded composite rock. Met Mine, 2009(1): 21余永强, 胡明研, 杨小林, 等. 层状复合岩体相似模拟的试验研究. 金属矿山, 2009(1):21 [5] Liu X Y, Ye Y C, Wang Q H, et al. Mechanical properties of similar material specimens of composite rock masses with different strengths under uniaxial compression. Rock Soil Mech, 2017, 38(S2): 183刘晓云, 叶义成, 王其虎, 等. 单轴压缩下不同强度组合复合岩体相似材料试件力学特性研究. 岩土力学, 2017, 38(S2):183 [6] Li A, Shao G J, Fan H L, et al. Investigation of mechanical properties of soft and hard interbedded composite rock mass based on meso-level heterogeneity. Chin J Rock Mech Eng, 2014, 33(S1): 3042李昂, 邵国建, 范华林, 等. 基于细观层次的软硬互层状复合岩体力学特性研究. 岩石力学与工程学报, 2014, 33(S1):3042 [7] Zhou H, Song M, Zhang C Q, et al. Effect of confining pressure on mechanical properties of horizontal layered composite rock. Rock Soil Mech, 2019, 40(2): 465周辉, 宋明, 张传庆, 等. 水平层状复合岩体变形破坏特征的围压效应研究. 岩土力学, 2019, 40(2):465 [8] Wang T, Ma Z G, Gong P, et al. Analysis of failure characteristics and strength criterion of coal-rock combined body with different height ratios. Adv Civ Eng, 2020, 2020: 1 [9] Guo D M, Zuo J P, Zhang Y, et al. Research on strength and failure mechanism of deep coal-rock combination bodies of different inclined angles. Rock Soil Mech, 2011, 32(5): 1333郭东明, 左建平, 张毅, 等. 不同倾角组合煤岩体的强度与破坏机制研究. 岩土力学, 2011, 32(5):1333 [10] Yin G Z, Li X, Lu J, et al. A failure criterion for layered composite rock under true triaxial stress conditions. Chin J Rock Mech Eng, 2017, 36(2): 261尹光志, 李星, 鲁俊, 等. 真三轴应力条件下层状复合岩石破坏准则. 岩石力学与工程学报, 2017, 36(2):261 [11] Liu Y S, Zhan X C, Qiu C C. Study on mechanical properties of layered composite rock under triaxial compression. J East China Jiaotong Univ, 2021, 38(3): 1刘永胜, 詹学才, 邱传传. 层状复合岩石三轴压缩力学性能研究. 华东交通大学学报, 2021, 38(3):1 [12] Zhu C J, Ma C, Zhou J X, et al. Mechanical properties and failure characteristics of composite coal and rock mass under dynamic and static loading. J China Coal Soc, 2021, 46(S2): 817朱传杰, 马聪, 周靖轩, 等. 动静载荷耦合作用下复合煤岩体的力学特性及破坏特征. 煤炭学报, 2021, 46(S2):817 [13] Du C C, Wen S, Kong Q M. Tests for dynamic mechanical properties of composite rock samples under 1-D dynamic-static combined loading. J Vib Shock, 2021, 40(21): 168杜超超, 温森, 孔庆梅. 一维动静组合加载下复合岩样动态力学特性试验研究. 振动与冲击, 2021, 40(21):168 [14] Wen S, Zhang C S, Chang Y L, et al. Dynamic compression characteristics of layered rock mass of significant strength changes in adjacent layers. J Rock Mech Geotech Eng, 2020, 12(2): 353 doi: 10.1016/j.jrmge.2019.09.003 [15] Yang R S, Li W Y, Fang S Z, et al. Experimental study on impact dynamic characteristics of layered composite rocks. Chin J Rock Mech Eng, 2019, 38(9): 1747杨仁树, 李炜煜, 方士正, 等. 层状复合岩体冲击动力学特性试验研究. 岩石力学与工程学报, 2019, 38(9):1747 [16] Yue Z W, Song Y, Chen B, et al. A study on the behaviors of dynamic fracture in layered rocks under impact loading. J Vib Shock, 2017, 36(12): 223岳中文, 宋耀, 陈彪, 等. 冲击载荷下层状岩体动态断裂行为的模拟试验研究. 振动与冲击, 2017, 36(12):223 [17] Li N N, Li J C, Li H B, et al. Shpb experiment on influence of contact area of joints on propagation of stress wave. Chin J Rock Mech Eng, 2015, 34(10): 1994李娜娜, 李建春, 李海波, 等. 节理接触面对应力波传播影响的SHPB试验研究. 岩石力学与工程学报, 2015, 34(10):1994 [18] Li X B. Rock Dynamics Fundamentals and Applications. Beijing: Science Press, 2014李夕兵. 岩石动力学基础与应用. 北京:科学出版社, 2014 [19] Pan B, Wang X G, Xu Z Y, et al. Research on the effect of joint angle on dynamic responses of rock materials. Chin J Rock Mech Eng, 2021, 40(3): 566潘博, 汪旭光, 徐振洋, 等. 节理角度对岩石材料的动态响应影响研究. 岩石力学与工程学报, 2021, 40(3):566 [20] Chen R, Xia K, Dai F, et al. Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing. Eng Fract Mech, 2009, 76(9): 1268 doi: 10.1016/j.engfracmech.2009.02.001 [21] Zhao G. Development of Micro-Macro Continuum-Discontinuum Coupled Numerical Method [Dissertation]. Switzerland: Ecole Polytechnique Federale de Lausanne, 2010 [22] Zhao G F, Fang J N, Zhao J A. A 3D distinct lattice spring model for elasticity and dynamic failure. Int J Numer Anal Meth Geomech, 2011, 35(8): 859 doi: 10.1002/nag.930 [23] Zhao Y X, Zhao G F, Jiang Y D, et al. Effects of bedding on the dynamic indirect tensile strength of coal: Laboratory experiments and numerical simulation. Int J Coal Geol, 2014, 132: 81 doi: 10.1016/j.coal.2014.08.007 [24] Zhao Y X, Zhao G F, Jiang Y D. Experimental and numerical modelling investigation on fracturing in coal under impact loads. Int J Fract, 2013, 183: 63 doi: 10.1007/s10704-013-9876-6 -