Time-dependent reliability analysis of deteriorating reinforced concrete bridges considering nonstationary processes
-
摘要: 采用Gamma随机过程描述车辆荷载频率函数,提出了基于荷载频率增大的钢筋混凝土桥梁时变可靠度分析方法。考虑历史荷载信息对桥梁时变抗力的验证作用,改进了抗力变异系数为时间变量的桥梁时变可靠度计算公式。采用上述方法,对某装配式预应力混凝土桥进行时变可靠度分析,结果表明,车辆荷载频率增量关联与否不影响结构时变可靠度的变化;结构在20至40 a的时变失效概率介于验证荷载为31.6%至36.4%初始抗力的失效概率之间,证明改进的公式具有更高的精度。当荷载频率λ小于10 a−1,考察范围不超过35 a,若历史荷载强度不高于初始抗力的29.1%,可以采用基于荷载频率函数λ(t)的可靠度计算方法;若一年两遇的车载强度超过结构初始抗力的36.4%,且年均增长率γ超过150%时,在海洋环境建造的钢筋混凝土梁桥在20 a内的失效概率较高,需引起注意,在设计和施工时增强钢筋的耐锈蚀性。Abstract: Traffic volume and vehicle loads are increasing with time during the bridge service life. Time-dependent reliability theory considers the time-varying effects of loads and resistance, which has been commonly adopted in recent engineering reliability research. The degradation of bridge resistance and increase of vehicle load and frequency varies with time, as described by a nonstationary stochastic model. The gamma stochastic process is adopted to describe the frequency function of vehicle load occurrence to promote the application of nonstationary processes in reliability studies, and time-dependent reliability analyzing approach is proposed for reinforced concrete bridges based on increasing load frequency. The time-dependent reliability equation is modified to account for the verifying effect of historical load information on time-varying resistance by including the coefficient of variation of bridge resistance as a time-associated variable. The above two methods are then used to perform a time-dependent reliability analysis on a prefabricated prestressed concrete bridge. The results show that the structural time-dependent reliability immunes the correlativity of frequency increment of vehicle loads; the time-dependent failure probabilities within 20 to 40 years range from those obtained by proof load tests with load intensities between 31.6% and 36.4% of the initial resistance, indicating higher precision of the modified equation. When the load frequency λ is less than ten times a year, the inspecting time interval is within 35 years, and the historical load intensity is less than 29.1% of the initial resistance, the approach based on load frequency function λ(t) is available. When the load frequency exceeds 36.4% of the bridge’s initial resistance, and the annual growth rate of frequency (γ) exceeds 150%. The RC bridge structure constructed in the marine environment has a higher failure probability within 20 years; thus, extra attention must be paid as corrosion resistance of reinforcements should be enhanced during its design and construction.
-
图 8 频率增大的多强度历史荷载对R20的验证结果及时变失效概率.(a)
$ \mu \left( {{R_{20}}} \right) $ ;(b)$ {P_{\text{f}}}\left( {20} \right) $ Figure 8. Verification of R20 by multi-intensity historical loads with increasing frequencies and time-dependent failure probability: (a)
$ \mu \left( {{R_{20}}} \right) $ ; (b)$ {P_{\text{f}}}\left( {20} \right) $ 表 1 多强度历史荷载对R20的验证结果及时变失效概率
Table 1. Verification of R20 by multi-intensity historical loads and time-dependent failure probability
Historical load/
(kN·m)μ(R20)/
(kN·m)σ(R20)/
(kN·m)CoV. Pf(20) 0 16892 2533.8 0.15 0 5500 16892.7 2532.0 0.1499 0.00028 5750 16895.1 2532.5 0.1499 0.00053 6000 16895.9 2529.2 0.1497 0.00096 6250 16899 2525.6 0.1495 0.0017 6500 16903 2522.5 0.1492 0.0028 6750 16912.2 2518.2 0.1489 0.0045 7000 16918.9 2509.7 0.1483 0.0071 7250 16933.8 2502.0 0.1478 0.0107 7500 16951.5 2490.6 0.1469 0.0157 7750 16974.4 2477.3 0.1459 0.0224 8000 17005 2461.7 0.1448 0.0313 表 2 MCS和式(7)的Pf(20)结果比较
Table 2. Comparison of Pf(20) between MCS and Eq. (7)
Historical
load/(kN·m)$ {P_{\text{f}}}\left( {20} \right) $
by MCS$ {P_{\text{f}}}\left( {20} \right) $
by Eq.(7)5500 0.00043 0.00047 6000 0.0015 0.0017 6500 0.0042 0.0047 7000 0.0105 0.0116 7500 0.0229 0.0252 8000 0.0450 0.0490 -
参考文献
[1] Wang C, Li Q W. Time-dependent reliability of existing bridges considering non-stationary load process. Eng Mech, 2016, 33(3): 18王草, 李全旺. 考虑非平稳车载过程的在役桥梁时变可靠度分析. 工程力学, 2016, 33(3):18 [2] Lei X. Condition Assessment Research of Existing Concrete Bridge’s Carrying Capacity by the Method of Risk Analysis [Dissertation]. Changsha: Changsha University of Science & Technology, 2011雷旭. 在役混凝土桥梁基于风险分析的承载能力评估研究[学位论文]. 长沙: 长沙理工大学, 2011 [3] Ye X Y, Wang C, Li Q W. New method for calculation of time-dependent reliability of RC bridges. Eng Mech, 2018, 35(11): 86 doi: 10.6052/j.issn.1000-4750.2017.09.0667叶新一, 王草, 李全旺. 桥梁结构时变可靠度计算的新方法. 工程力学, 2018, 35(11):86 doi: 10.6052/j.issn.1000-4750.2017.09.0667 [4] Ministry of Housing and Urban-Rural Development, People’s Republic of China. GB50153—2008 Unified Standard for Reliability Design of Engineering Structures. Beijing: China Architecture & Building Press, 2008中华人民共和国住房和城乡建设部. GB50153—2008工程结构可靠性设计统一标准. 北京: 中国建筑工业出版社, 2008 [5] Mori Y, Ellingwood B R. Reliability-based service-life assessment of aging concrete structures. J Struct Eng, 1993, 119(5): 1600 doi: 10.1061/(ASCE)0733-9445(1993)119:5(1600) [6] Qin Q, Yang X G. Time-dependent reliability analysis of deteriorating structures. J Tsinghua Univ (Sci Technol) , 2005, 45(6): 733 doi: 10.3321/j.issn:1000-0054.2005.06.005秦权, 杨小刚. 退化结构时变可靠度分析. 清华大学学报(自然科学版), 2005, 45(6):733 doi: 10.3321/j.issn:1000-0054.2005.06.005 [7] Li Q W, Wang C, Ellingwood B R. Time-dependent reliability of aging structures in the presence of non-stationary loads and degradation. Struct Saf, 2015, 52: 132 doi: 10.1016/j.strusafe.2014.10.003 [8] Wang Z Q, Chen W. Time-variant reliability assessment through equivalent stochastic process transformation. Reliab Eng Syst Saf, 2016, 152: 166 doi: 10.1016/j.ress.2016.02.008 [9] Jin C H, Qian Y J, Xu W X, et al. Reliability evaluation method of bridge structure considering time-varying resistance verified by correlated load. J Vib Shock, 2021, 40(15): 146金聪鹤, 钱永久, 徐望喜, 等. 考虑关联荷载验证时变抗力的桥梁结构可靠度评估方法. 振动与冲击, 2021, 40(15):146 [10] Li Q W, Wang C. Effect of correlation of stochastic loadings on the time-dependent reliability of structures. J Tsinghua Univ Sci Technol, 2014, 54(10): 1316李全旺, 王草. 荷载随机过程相关性对结构时变可靠度的影响. 清华大学学报(自然科学版), 2014, 54(10):1316 [11] Yuan Y G, Xu X. Non-stationary degradation model and updating of existing concrete bridges based on Gamma process // 27th National Academic Conference on Structural Engineering. Xi’an, 2018: 569袁阳光, 许昕. 基于Gamma过程的在役混凝土桥梁非平稳劣化进程及模型后验 // 第27届全国结构工程学术会议论文集. 西安, 2018:569 [12] Zhang Y W, Gong C L, Li C N. Efficient time-variant reliability analysis through approximating the most probable point trajectory. Struct Multidiscip Optim, 2021, 63(1): 289 doi: 10.1007/s00158-020-02696-z [13] Zhou T, Peng Y B, Li J. Structural reliability analysis using probability density evolution method and adaptive surrogate model. J Vib Eng, 2020, 33(5): 1035周通, 彭勇波, 李杰. 结构可靠度分析的概率密度演化理论——自适应代理模型方法. 振动工程学报, 2020, 33(5):1035 [14] Shi Y, Lu Z Z, He R Y. Advanced time-dependent reliability analysis based on adaptive sampling region with Kriging model. Proc Inst Mech Eng Part O J Risk Reliab, 2020, 234(4): 588 doi: 10.1177/1350650119883559 [15] Dai H Z, Zheng Z B, Ma H H. An explicit method for simulating non-Gaussian and non-stationary stochastic processes by Karhunen-Loeve and polynomial chaos expansion. Mech Syst Signal Process, 2019, 115: 1 doi: 10.1016/j.ymssp.2018.05.026 [16] Tan X H, Dong X L, Fei S Z, et al. Reliability analysis method based on KL expansion and its application. Chin J Geotech Eng, 2020, 42(5): 808谭晓慧, 董小乐, 费锁柱, 等. 基于KL展开的可靠度分析方法及其应用. 岩土工程学报, 2020, 42(5):808 [17] Zhang Y F, Lu Z Q. Remaining useful life prediction based on an integrated neural network. Chin J Eng, 2020, 42(10): 1372张永峰, 陆志强. 基于集成神经网络的剩余寿命预测. 工程科学学报, 2020, 42(10):1372 [18] Faber M H, Val D V, Stewart M G. Proof load testing for bridge assessment and upgrading. Eng Struct, 2000, 22(12): 1677 doi: 10.1016/S0141-0296(99)00111-X [19] Stewart M G. Effect of construction and service loads on reliability of existing RC buildings. J Struct Eng, 2001, 127(10): 1232 doi: 10.1061/(ASCE)0733-9445(2001)127:10(1232) [20] Li Q W, Wang C, Zhang L. Updating for bearing capacity of existing bridges considering structural deterioration and loading history. J Tsinghua Univ Sci Technol, 2015, 55(1): 8李全旺, 王草, 张龙. 考虑结构劣化和荷载历史的既有桥梁承载力更新. 清华大学学报(自然科学版), 2015, 55(1):8 [21] Suo Q H. Research on Resistance Assessment Method of Existing Bridges Based on Theory of Probability [Dissertation]. Chengdu: Southwest Jiaotong University, 2006索清辉. 基于概率理论的既有桥梁承载力评估方法研究[学位论文]. 成都: 西南交通大学, 2006 [22] Wang C. Mathematical Formulation Tools for Time-Dependent Reliability Assessment of Existing Structures [Dissertation]. Beijing: Tsinghua University, 2015王草. 既有结构时变可靠度分析的数学方法[学位论文]. 北京: 清华大学, 2015 [23] Pan P, Li Q W, Zhou Y B, et al. Vehicle survey and local fatigue analysis of a highway bridge. China Civ Eng J, 2011, 44(5): 94潘鹏, 李全旺, 周怡斌, 等. 某公路大桥车辆荷载调查与局部疲劳分析. 土木工程学报, 2011, 44(5):94 [24] Hall W B. Reliability of service-proven structures. J Struct Eng, 1988, 114(3): 608 doi: 10.1061/(ASCE)0733-9445(1988)114:3(608) [25] Jin X C, Zhang S Q. Non-parametric fitting extrapolation based on measured load of high-speed axle. J Beijing Jiaotong Univ, 2019, 43(6): 97金新灿, 张世强. 基于高速轮轴实测载荷的非参数拟合外推研究. 北京交通大学学报, 2019, 43(6):97 [26] Enright M P, Frangopol D M. Service-life prediction of deteriorating concrete bridges. J Struct Eng, 1998, 124(3): 309 doi: 10.1061/(ASCE)0733-9445(1998)124:3(309) [27] Ministry of Transport of the People’s Republic of China. JTG 3362-2018 Specifications for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts. Beijing: China Communications Press, 2018中华人民共和国交通运输部. JTG 3362—2018公路钢筋混凝土及预应力混凝土桥涵设计规范. 北京: 人民交通出版社, 2018 [28] Ministry of Transport of the People’s Republic of China. JTG D60-2015 General Specifications for Design of Highway Bridges and Culverts. Beijing: China Communications Press, 2015中华人民共和国交通运输部. JTG D60—2015公路桥涵设计通用规范. 北京: 人民交通出版社, 2015 [29] Ministry of Housing and Urban-Rural Development, People’s Republic of China. CJJ11—2011 Code for Design of the Municipal Bridge. Beijing: China Architecture & Building Press, 2011中华人民共和国住房和城乡建设部. CJJ11—2011城市桥梁设计规范. 北京: 中国建筑工业出版社, 2011 [30] Li Z H, Li C Q, Sun J K, et al. Estimation of extreme vehicle load effect based on GPD model. Eng Mech, 2012, 29(Suppl 1): 166 -