• 《工程索引》(EI)刊源期刊
  • 中文核心期刊(综合性理工农医类)
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑非平稳过程的劣化钢筋混凝土梁桥时变可靠度分析

金聪鹤 钱永久 张方 徐望喜

金聪鹤, 钱永久, 张方, 徐望喜. 考虑非平稳过程的劣化钢筋混凝土梁桥时变可靠度分析[J]. 工程科学学报.
引用本文: 金聪鹤, 钱永久, 张方, 徐望喜. 考虑非平稳过程的劣化钢筋混凝土梁桥时变可靠度分析[J]. 工程科学学报.
JIN Cong-he, QIAN Yong-jiu, ZHANG Fang, XU Wang-xi. Time-dependent reliability analysis of deteriorating reinforced concrete bridges considering nonstationary processes[J]. Chinese Journal of Engineering.
Citation: JIN Cong-he, QIAN Yong-jiu, ZHANG Fang, XU Wang-xi. Time-dependent reliability analysis of deteriorating reinforced concrete bridges considering nonstationary processes[J]. Chinese Journal of Engineering.

考虑非平稳过程的劣化钢筋混凝土梁桥时变可靠度分析

基金项目: 国家自然科学基金资助项目(51778532)
详细信息
    通讯作者:

    Email:yjqian@sina.com

  • 中图分类号: U441+.2

Time-dependent reliability analysis of deteriorating reinforced concrete bridges considering nonstationary processes

More Information
  • 摘要: 采用Gamma随机过程描述车辆荷载频率函数,提出了基于荷载频率增大的钢筋混凝土桥梁时变可靠度分析方法。考虑历史荷载信息对桥梁时变抗力的验证作用,改进了抗力变异系数为时间变量的桥梁时变可靠度计算公式。采用上述方法,对某装配式预应力混凝土桥进行时变可靠度分析,结果表明,车辆荷载频率增量关联与否不影响结构时变可靠度的变化;结构在20至40 a的时变失效概率介于验证荷载为31.6%至36.4%初始抗力的失效概率之间,证明改进的公式具有更高的精度。当荷载频率λ小于10 a−1,考察范围不超过35 a,若历史荷载强度不高于初始抗力的29.1%,可以采用基于荷载频率函数λ(t)的可靠度计算方法;若一年两遇的车载强度超过结构初始抗力的36.4%,且年均增长率γ超过150%时,在海洋环境建造的钢筋混凝土梁桥在20 a内的失效概率较高,需引起注意,在设计和施工时增强钢筋的耐锈蚀性。

     

  • 图  1  Poisson随机过程示意图

    Figure  1.  Sketch of Poisson stochastic process

    图  2  荷载频率函数图

    Figure  2.  Diagram of load frequency function

    图  3  不同尺度参数的$ \tilde \lambda {(t)_{\text{I}}} $

    Figure  3.  Fig. 3$ \tilde \lambda {(t)_{\text{I}}} $with different scale parameters

    图  4  不同尺度参数的$ \tilde \lambda {(t)_{\text{D}}} $

    Figure  4.  Fig. 4$ \tilde \lambda {(t)_{\text{D}}} $with different scale parameters

    图  5  抗力衰减与倒推初始抗力过程示意图

    Figure  5.  Resistance degradation and process of initial resistance retrospection

    图  6  验证荷载实验现场

    Figure  6.  Proof load test site

    图  7  基于验证荷载实验的结构时变可靠度

    Figure  7.  Structural time-dependent reliability based on proof load testing

    图  8  频率增大的多强度历史荷载对R20的验证结果及时变失效概率.(a) $ \mu \left( {{R_{20}}} \right) $;(b) $ {P_{\text{f}}}\left( {20} \right) $

    Figure  8.  Verification of R20 by multi-intensity historical loads with increasing frequencies and time-dependent failure probability: (a) $ \mu \left( {{R_{20}}} \right) $; (b) $ {P_{\text{f}}}\left( {20} \right) $

    图  9  时变失效概率

    Figure  9.  Time-dependent failure probability

    图  10  时变失效概率结果对比

    Figure  10.  Comparison of time-dependent failure probability

    图  11  λ(t)为二次函数时公式(7)与MCS的时变失效概率对比

    Figure  11.  Comparison of time-dependent failure probabilities between Eq. (7) and MCS when λ(t) is quadratic

    表  1  多强度历史荷载对R20的验证结果及时变失效概率

    Table  1.   Verification of R20 by multi-intensity historical loads and time-dependent failure probability

    Historical load/
    (kN·m)
    μ(R20)/
    (kN·m)
    σ(R20)/
    (kN·m)
    CoV.Pf(20)
    0168922533.80.150
    550016892.72532.00.14990.00028
    575016895.12532.50.14990.00053
    600016895.92529.20.14970.00096
    6250168992525.60.14950.0017
    6500169032522.50.14920.0028
    675016912.22518.20.14890.0045
    700016918.92509.70.14830.0071
    725016933.82502.00.14780.0107
    750016951.52490.60.14690.0157
    775016974.42477.30.14590.0224
    8000170052461.70.14480.0313
    下载: 导出CSV

    表  2  MCS和式(7)的Pf(20)结果比较

    Table  2.   Comparison of Pf(20) between MCS and Eq. (7)

    Historical
    load/(kN·m)
    $ {P_{\text{f}}}\left( {20} \right) $
    by MCS
    $ {P_{\text{f}}}\left( {20} \right) $
    by Eq.(7)
    55000.000430.00047
    60000.00150.0017
    65000.00420.0047
    70000.01050.0116
    75000.02290.0252
    80000.04500.0490
    下载: 导出CSV
  • [1] Wang C, Li Q W. Time-dependent reliability of existing bridges considering non-stationary load process. Eng Mech, 2016, 33(3): 18

    王草, 李全旺. 考虑非平稳车载过程的在役桥梁时变可靠度分析. 工程力学, 2016, 33(3):18
    [2] Lei X. Condition Assessment Research of Existing Concrete Bridge’s Carrying Capacity by the Method of Risk Analysis [Dissertation]. Changsha: Changsha University of Science & Technology, 2011

    雷旭. 在役混凝土桥梁基于风险分析的承载能力评估研究[学位论文]. 长沙: 长沙理工大学, 2011
    [3] Ye X Y, Wang C, Li Q W. New method for calculation of time-dependent reliability of RC bridges. Eng Mech, 2018, 35(11): 86 doi: 10.6052/j.issn.1000-4750.2017.09.0667

    叶新一, 王草, 李全旺. 桥梁结构时变可靠度计算的新方法. 工程力学, 2018, 35(11):86 doi: 10.6052/j.issn.1000-4750.2017.09.0667
    [4] Ministry of Housing and Urban-Rural Development, People’s Republic of China. GB50153—2008 Unified Standard for Reliability Design of Engineering Structures. Beijing: China Architecture & Building Press, 2008

    中华人民共和国住房和城乡建设部. GB50153—2008工程结构可靠性设计统一标准. 北京: 中国建筑工业出版社, 2008
    [5] Mori Y, Ellingwood B R. Reliability-based service-life assessment of aging concrete structures. J Struct Eng, 1993, 119(5): 1600 doi: 10.1061/(ASCE)0733-9445(1993)119:5(1600)
    [6] Qin Q, Yang X G. Time-dependent reliability analysis of deteriorating structures. J Tsinghua Univ (Sci Technol), 2005, 45(6): 733 doi: 10.3321/j.issn:1000-0054.2005.06.005

    秦权, 杨小刚. 退化结构时变可靠度分析. 清华大学学报(自然科学版), 2005, 45(6):733 doi: 10.3321/j.issn:1000-0054.2005.06.005
    [7] Li Q W, Wang C, Ellingwood B R. Time-dependent reliability of aging structures in the presence of non-stationary loads and degradation. Struct Saf, 2015, 52: 132 doi: 10.1016/j.strusafe.2014.10.003
    [8] Wang Z Q, Chen W. Time-variant reliability assessment through equivalent stochastic process transformation. Reliab Eng Syst Saf, 2016, 152: 166 doi: 10.1016/j.ress.2016.02.008
    [9] Jin C H, Qian Y J, Xu W X, et al. Reliability evaluation method of bridge structure considering time-varying resistance verified by correlated load. J Vib Shock, 2021, 40(15): 146

    金聪鹤, 钱永久, 徐望喜, 等. 考虑关联荷载验证时变抗力的桥梁结构可靠度评估方法. 振动与冲击, 2021, 40(15):146
    [10] Li Q W, Wang C. Effect of correlation of stochastic loadings on the time-dependent reliability of structures. J Tsinghua Univ Sci Technol, 2014, 54(10): 1316

    李全旺, 王草. 荷载随机过程相关性对结构时变可靠度的影响. 清华大学学报(自然科学版), 2014, 54(10):1316
    [11] Yuan Y G, Xu X. Non-stationary degradation model and updating of existing concrete bridges based on Gamma process // 27th National Academic Conference on Structural Engineering. Xian, 2018: 569

    袁阳光, 许昕. 基于Gamma过程的在役混凝土桥梁非平稳劣化进程及模型后验 // 第27届全国结构工程学术会议论文集. 西安, 2018:569
    [12] Zhang Y W, Gong C L, Li C N. Efficient time-variant reliability analysis through approximating the most probable point trajectory. Struct Multidiscip Optim, 2021, 63(1): 289 doi: 10.1007/s00158-020-02696-z
    [13] Zhou T, Peng Y B, Li J. Structural reliability analysis using probability density evolution method and adaptive surrogate model. J Vib Eng, 2020, 33(5): 1035

    周通, 彭勇波, 李杰. 结构可靠度分析的概率密度演化理论——自适应代理模型方法. 振动工程学报, 2020, 33(5):1035
    [14] Shi Y, Lu Z Z, He R Y. Advanced time-dependent reliability analysis based on adaptive sampling region with Kriging model. Proc Inst Mech Eng Part O J Risk Reliab, 2020, 234(4): 588 doi: 10.1177/1350650119883559
    [15] Dai H Z, Zheng Z B, Ma H H. An explicit method for simulating non-Gaussian and non-stationary stochastic processes by Karhunen-Loeve and polynomial chaos expansion. Mech Syst Signal Process, 2019, 115: 1 doi: 10.1016/j.ymssp.2018.05.026
    [16] Tan X H, Dong X L, Fei S Z, et al. Reliability analysis method based on KL expansion and its application. Chin J Geotech Eng, 2020, 42(5): 808

    谭晓慧, 董小乐, 费锁柱, 等. 基于KL展开的可靠度分析方法及其应用. 岩土工程学报, 2020, 42(5):808
    [17] Zhang Y F, Lu Z Q. Remaining useful life prediction based on an integrated neural network. Chin J Eng, 2020, 42(10): 1372

    张永峰, 陆志强. 基于集成神经网络的剩余寿命预测. 工程科学学报, 2020, 42(10):1372
    [18] Faber M H, Val D V, Stewart M G. Proof load testing for bridge assessment and upgrading. Eng Struct, 2000, 22(12): 1677 doi: 10.1016/S0141-0296(99)00111-X
    [19] Stewart M G. Effect of construction and service loads on reliability of existing RC buildings. J Struct Eng, 2001, 127(10): 1232 doi: 10.1061/(ASCE)0733-9445(2001)127:10(1232)
    [20] Li Q W, Wang C, Zhang L. Updating for bearing capacity of existing bridges considering structural deterioration and loading history. J Tsinghua Univ Sci Technol, 2015, 55(1): 8

    李全旺, 王草, 张龙. 考虑结构劣化和荷载历史的既有桥梁承载力更新. 清华大学学报(自然科学版), 2015, 55(1):8
    [21] Suo Q H. Research on Resistance Assessment Method of Existing Bridges Based on Theory of Probability [Dissertation]. Chengdu: Southwest Jiaotong University, 2006

    索清辉. 基于概率理论的既有桥梁承载力评估方法研究[学位论文]. 成都: 西南交通大学, 2006
    [22] Wang C. Mathematical Formulation Tools for Time-Dependent Reliability Assessment of Existing Structures [Dissertation]. Beijing: Tsinghua University, 2015

    王草. 既有结构时变可靠度分析的数学方法[学位论文]. 北京: 清华大学, 2015
    [23] Pan P, Li Q W, Zhou Y B, et al. Vehicle survey and local fatigue analysis of a highway bridge. China Civ Eng J, 2011, 44(5): 94

    潘鹏, 李全旺, 周怡斌, 等. 某公路大桥车辆荷载调查与局部疲劳分析. 土木工程学报, 2011, 44(5):94
    [24] Hall W B. Reliability of service-proven structures. J Struct Eng, 1988, 114(3): 608 doi: 10.1061/(ASCE)0733-9445(1988)114:3(608)
    [25] Jin X C, Zhang S Q. Non-parametric fitting extrapolation based on measured load of high-speed axle. J Beijing Jiaotong Univ, 2019, 43(6): 97

    金新灿, 张世强. 基于高速轮轴实测载荷的非参数拟合外推研究. 北京交通大学学报, 2019, 43(6):97
    [26] Enright M P, Frangopol D M. Service-life prediction of deteriorating concrete bridges. J Struct Eng, 1998, 124(3): 309 doi: 10.1061/(ASCE)0733-9445(1998)124:3(309)
    [27] Ministry of Transport of the People’s Republic of China. JTG 3362-2018 Specifications for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts. Beijing: China Communications Press, 2018

    中华人民共和国交通运输部. JTG 3362—2018公路钢筋混凝土及预应力混凝土桥涵设计规范. 北京: 人民交通出版社, 2018
    [28] Ministry of Transport of the People’s Republic of China. JTG D60-2015 General Specifications for Design of Highway Bridges and Culverts. Beijing: China Communications Press, 2015

    中华人民共和国交通运输部. JTG D60—2015公路桥涵设计通用规范. 北京: 人民交通出版社, 2015
    [29] Ministry of Housing and Urban-Rural Development, People’s Republic of China. CJJ11—2011 Code for Design of the Municipal Bridge. Beijing: China Architecture & Building Press, 2011

    中华人民共和国住房和城乡建设部. CJJ11—2011城市桥梁设计规范. 北京: 中国建筑工业出版社, 2011
    [30] Li Z H, Li C Q, Sun J K, et al. Estimation of extreme vehicle load effect based on GPD model. Eng Mech, 2012, 29(Suppl 1): 166
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  10
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 网络出版日期:  2022-05-12

目录

    /

    返回文章
    返回