• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X70管线钢及焊缝在模拟煤制气含氢环境下的氢脆敏感性

关鸿鹏 林振娴 李瑜仙 刘青 邢云颖 王晶 王修云

关鸿鹏, 林振娴, 李瑜仙, 刘青, 邢云颖, 王晶, 王修云. X70管线钢及焊缝在模拟煤制气含氢环境下的氢脆敏感性[J]. 工程科学学报, 2017, 39(4): 535-541. doi: 10.13374/j.issn2095-9389.2017.04.008
引用本文: 关鸿鹏, 林振娴, 李瑜仙, 刘青, 邢云颖, 王晶, 王修云. X70管线钢及焊缝在模拟煤制气含氢环境下的氢脆敏感性[J]. 工程科学学报, 2017, 39(4): 535-541. doi: 10.13374/j.issn2095-9389.2017.04.008
GUAN Hong-peng, LIN Zhen-xian, LI Yu-xian, LIU Qing, XING Yun-ying, WANG Jing, WANG Xiu-yun. Hydrogen embrittlement susceptibility of the X70 pipeline steel substrate and weld in simulated coal gas containing hydrogen environment[J]. Chinese Journal of Engineering, 2017, 39(4): 535-541. doi: 10.13374/j.issn2095-9389.2017.04.008
Citation: GUAN Hong-peng, LIN Zhen-xian, LI Yu-xian, LIU Qing, XING Yun-ying, WANG Jing, WANG Xiu-yun. Hydrogen embrittlement susceptibility of the X70 pipeline steel substrate and weld in simulated coal gas containing hydrogen environment[J]. Chinese Journal of Engineering, 2017, 39(4): 535-541. doi: 10.13374/j.issn2095-9389.2017.04.008

X70管线钢及焊缝在模拟煤制气含氢环境下的氢脆敏感性

doi: 10.13374/j.issn2095-9389.2017.04.008
详细信息
  • 中图分类号: TG172.3;TE832

Hydrogen embrittlement susceptibility of the X70 pipeline steel substrate and weld in simulated coal gas containing hydrogen environment

  • 摘要: 通过氢渗透测试、氢扩散模拟以及氢含量测试技术研究X70钢在模拟4 MPa总压,0.2 MPa氢气分压煤制气环境下的充氢过程,并通过冲击韧性测试、裂纹扩展测试以及缺口拉伸和慢应变速率拉伸测试方法,从不同角度分析X70钢母材和焊缝组织在模拟煤制气含氢环境下的力学性能.结果表明,在总压4 MPa,0.2 MPa含氢煤制气环境中,X70钢表面存在吸附氢原子并能扩散进入X70钢内部,达到稳态后内部的可扩散氢质量分数为1.9×10-7;与空气中的原始性能比较,X70钢焊缝和母材的冲击性能、缺口拉伸和慢应变速率拉伸强度、塑性以及材料的损伤容限均未发生下降;在实验煤制气环境中,X70钢具有较低的氢脆风险.
  • [3] Marchi C S, Somerday B P, Nibur K A, et al. Fracture and fatigue of commercial grade API pipeline steels in gaseous hydrogen//Proceedings of the ASME 2010 Pressure Vessels&Piping Division/K-PVP Conference. Bellevue, 2010:18
    [4] Cialone H J, Holbrook J H. Sensitivity of steels to degradation in gaseous hydrogen//Hydrogen Embrittlement:Prevention and Control. Los Angeles, 1988
    [5] Briottet L, Batisse R, Dinechin G D, et al. Recommendations on X80 steel for the design of hydrogen gas transmission pipelines. Int J Hydrogen Energy, 2012, 37(11):9423
    [6] Nanninga N E, Levy Y S, Drexler E S, et al. Comparison of hydrogen embrittlement in three pipeline steels in high pressure gaseous hydrogen environments. Corros Sci, 2012, 59:1
    [7] Briottet L, Moro I, Lemoine P. Quantifying the hydrogen embrittlement of pipeline steels for safety considerations. Int J Hydrogen Energy, 2012, 37(22):17616
    [8] Amend W E, Quickel G T, Bruce W A, et al. Hydrogen assisted cracking failures of girth welds in oil and pipelines//Proceedings of the 20129th International Pipeline Conference. Calgary, 2012:24
    [12] Smialowski M. Hydrogen in Steel:Effect of Hydrogen on Iron and Steel during Production, Fabrication, and Use. New York:Pergamon Press, 1962
    [13] Somerday B P, Nibur K A, San Marchi C. Measurements of fatigue crack growth rates for steels in hydrogen containment components//Proceeding of the 3rd International Conference on Hydrogen Safety. Ajaccio, 2009
    [14] Tison P. Influence of the Hydrogen Behavior on Materials[Dissertation]. France:Pierre and Marie Curie University,1983(Tison P. Influence de L'hydrogène sur le Comportement des Matériaux[Dissertation]. France:Université Pierre et Marie Curie, 1983)
    [15] Chêne J, Brass A M. Hydrogen Transport by mobile dislocations in nickel base superalloy single crystals. Scripta Mater, 1999, 40(5):537
    [16] Moro I, Briottet L, Lemoine P, et al. Damage under high-pressure hydrogen environment of a high strength pipeline steel X80//Proceeding of the 2008 International Hydrogen Conference. Jackson Lake, 2008
    [17] Lynch S P. Progress towards understanding mechanisms of hydrogen embrittlement and stress corrosion cracking//Corrosion 2007. Nashville, 2007
    [18] Ren X C, Chu W Y, Su Y J, et al. Effects of atomic hydrogen and flaking on mechanical properties of wheel steel. Metall Mater Trans A, 2007, 38(5):1004
    [19] Yamasaki S, Takahashi T. Delayed fracture mechanism in high strength steels by acoustic emission source wave analysis. Tetsuto-Hagane, 1997, 83(7):460
    [20] Takagi S, Inoue T, Hara T, et al. Parameters for the evaluation of hydrogen embrittlement of high strength steel. Tetsu-toHagane, 2000, 86(10):689
  • 加载中
计量
  • 文章访问数:  514
  • HTML全文浏览量:  108
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-22

目录

    /

    返回文章
    返回