• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧烛中锰金属粒径对氯酸钠热解的催化作用

刘建国 金龙哲 高娜 汪澍 张浩

刘建国, 金龙哲, 高娜, 汪澍, 张浩. 氧烛中锰金属粒径对氯酸钠热解的催化作用[J]. 工程科学学报, 2017, 39(8): 1159-1165. doi: 10.13374/j.issn2095-9389.2017.08.004
引用本文: 刘建国, 金龙哲, 高娜, 汪澍, 张浩. 氧烛中锰金属粒径对氯酸钠热解的催化作用[J]. 工程科学学报, 2017, 39(8): 1159-1165. doi: 10.13374/j.issn2095-9389.2017.08.004
LIU Jian-guo, JIN Long-zhe, GAO Na, WANG Shu, ZHANG Hao. Catalytic effect of Mn particle size on thermal decomposition of sodium chlorate in oxygen generators[J]. Chinese Journal of Engineering, 2017, 39(8): 1159-1165. doi: 10.13374/j.issn2095-9389.2017.08.004
Citation: LIU Jian-guo, JIN Long-zhe, GAO Na, WANG Shu, ZHANG Hao. Catalytic effect of Mn particle size on thermal decomposition of sodium chlorate in oxygen generators[J]. Chinese Journal of Engineering, 2017, 39(8): 1159-1165. doi: 10.13374/j.issn2095-9389.2017.08.004

氧烛中锰金属粒径对氯酸钠热解的催化作用

doi: 10.13374/j.issn2095-9389.2017.08.004
基金项目: 

国家自然科学基金资助项目(51504017)

教育部博士点资助项目(20130006120020)

中国博士后资助基金资助项目(2014T70039,2013M540866)

中央高校基本科研业务经费资助项目(FRF-TP-15-043A3)

详细信息
  • 中图分类号: X936

Catalytic effect of Mn particle size on thermal decomposition of sodium chlorate in oxygen generators

  • 摘要: 分别制备了两组粒径的Mn金属燃料(平均粒径分别为18.73和5.24 μm),利用激光粒度分析仪测试了其粒径分布,扫描电镜分析了表面形貌,能谱仪确定了所含元素.对NaClO3,NaClO3与Co3O4,NaClO3、Co3O4与Mn的混合物分别进行了热重与示差扫描量热联合分析实验(TGA-DSC),通过对比各混合物热解起始温度及其他特征温度,探究了Mn金属粒径对NaClO3热解的催化强度与热解稳定性的影响.研究结果表明:Co3O4虽对NaClO3热解具有催化性,热解开始温度(To)由512.3℃下降为333.0℃,但其可导致NaClO3热解的不稳定,热解阶梯由1个变为3个;Mn金属燃料对NaClO3中间产物具有明显的催化性,且随着粒径减小,催化强度逐渐增加,热解终止温度(Tf)由419.8℃下降为351.9℃,同时NaClO3热解阶梯减少,热解温度区间变窄(由180.6℃减小为19.4℃),热解更加稳定.
  • [1] Jin L Z, Wang S, Liu S C, et al. Development of a low oxygen generation rate chemical oxygen generator for emergency refuge spaces in underground mines. Combust Sci Technol, 2015, 187(8):1229
    [2] Shafirovich E, Garcia A, Swamy A K N, et al. On feasibility of decreasing metal fuel content in chemical oxygen generators. Combust Flame, 2012, 159(1):420
    [4] Graf J, Dunlap C, Haas J, et al. Development of a solid chlorate backup oxygen delivery system for the international space station//International Conference on Envrionmental Systems (ICES). Toulouse, 2000
    [6] Littman J, Prince R N. Research on sodium chlorate candles for the storage and supply of oxygen for space exploration. NASA Special Publ, 1970, 234:291
    [9] Liu J G, Jin L Z, Gao N, et al. Effect of forming technology on oxygen supply performance of oxygen candles in refuge spaces//3rd International Symposium on Mine Safety Science and Engineering. Montreal, 2016:308
    [10] Wydeven T. Catalytic decomposition of sodium chlorate. J Catal, 1970, 19(2):162
    [12] Shafirovich E, Mukasyan A S, Varma A, et al. Mechanism of combustion in low-exothermic mixtures of sodium chlorate and metal fuel. Combust Flame, 2002, 128(1-2):133
    [13] Shafirovich E, Zhou C, Mukasyan A S, et al. Combustion fluctuations in low-exothermic condensed systems for emergency oxygen generation. Combust Flame, 2003, 135(4):557
    [14] Shafirovich E, Zhou C J, Ekambaram S, et al. Catalytic effects of metals on thermal decomposition of sodium chlorate for emergency oxygen generators. Ind Eng Chem Res, 2007, 46(10):3073
    [15] Machado M A, Rodriguez D A, Aly Y, et al. Nanocomposite and mechanically alloyed reactive materials as energetic additives in chemical oxygen generators. Combust Flame, 2014, 161(10):2708
    [16] Zhang Y C, Kshirsagar G, Ellison J E, et al. Catalytic effects of non-oxide metal compounds on the thermal decomposition of sodium chlorate. Ind Eng Chem Res, 1993, 32(11):2863
    [17] Zhang Y C, Kshirsagar G, Ellison J E, et al. Catalytic effects of metal oxides on the thermal decomposition of sodium chlorate. Thermochimical Acta, 1993, 228:147
    [18] Phuoc T X, Chen R H. Modeling the effect of particle size on the activation energy and ignition temperature of metallic nanoparticles. Combust Flame, 2012, 159(1):416
    [19] Mohan S, Trunov M A, Dreizin E L. On possibility of vapor-phase combustion for fine aluminum particles. Combust Flame, 2009, 156(11):2213
    [20] Huang Y, Risha G A, Yang V, et al. Effect of particle size on combustion of aluminum particle dust in air. Combust Flame, 2009, 156(1):5
    [21] British Standards Institution. ISO 11358-1-2014 Plastics-Thermogravimetry (TG) of polymers-Part 1:General principles. Geneva, International Organization for Standardization, 2014
    [22] Markowitz M M, Boryta D A, Stewart Jr H. The differential thermal analysis of perchlorates. VI. Transient perchlorate formation during the pyrolysis of the alkali metal chlorates. J Phys Chem, 1964, 68(8):2282
    [23] Hu M, Chen Z H, Guo D B, et al. Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria. Bioresour Technol, 2015, 177:41
    [24] Ceylan S, Kazan D. Pyrolysis kinetics and thermal characteristics of microalgae Nannochloropsis oculata and Tetraselmis sp. Bioresour Technol, 2015, 187:1
    [25] Boon T H, Raheem A, Ghani W A W A K, et al. Thermogravimetric study of napier grass in inert and oxidative atmospheres conditions. J Phys Sci, 2017, 28(Suppl 1):155
    [26] Rudloff W K, Freeman E S. Catalytic effect of metal oxides on thermal-decomposition reactions. I. The mechanism of the molten-phase thermal decomposition of potassium chlorate and of potassium chlorate in mixtures with potassium chloride and potassium perchlorate. J Phys Chem, 1969, 73(5):1209
    [27] Zhang Y W, Yan K, Qiu K Z, et al. Catalyst for lithium perchlorate decomposition. J Propul Power, 2015, 31(5):1445
  • 加载中
计量
  • 文章访问数:  481
  • HTML全文浏览量:  109
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-09

目录

    /

    返回文章
    返回