• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

尾矿库溃坝灾害防控现状及发展

王昆 杨鹏 Karen Hudson-Edwards 吕文生 卜磊

王昆, 杨鹏, Karen Hudson-Edwards, 吕文生, 卜磊. 尾矿库溃坝灾害防控现状及发展[J]. 工程科学学报, 2018, 40(5): 526-539. doi: 10.13374/j.issn2095-9389.2018.05.002
引用本文: 王昆, 杨鹏, Karen Hudson-Edwards, 吕文生, 卜磊. 尾矿库溃坝灾害防控现状及发展[J]. 工程科学学报, 2018, 40(5): 526-539. doi: 10.13374/j.issn2095-9389.2018.05.002
WANG Kun, YANG Peng, Karen Hudson-Edwards, LÜ Wen-sheng, BU Lei. Status and development for the prevention and management of tailings dam failure accidents[J]. Chinese Journal of Engineering, 2018, 40(5): 526-539. doi: 10.13374/j.issn2095-9389.2018.05.002
Citation: WANG Kun, YANG Peng, Karen Hudson-Edwards, LÜ Wen-sheng, BU Lei. Status and development for the prevention and management of tailings dam failure accidents[J]. Chinese Journal of Engineering, 2018, 40(5): 526-539. doi: 10.13374/j.issn2095-9389.2018.05.002

尾矿库溃坝灾害防控现状及发展

doi: 10.13374/j.issn2095-9389.2018.05.002
基金项目: 

国家留学基金委建设高水平大学公派研究生资助项目(201706460051)

国家自然科学基金资助项目(51774045)

详细信息
  • 中图分类号: TD77.1

Status and development for the prevention and management of tailings dam failure accidents

  • 摘要: 尾矿库溃坝灾害应急响应时间短、潜在威胁巨大,往往造成惨重人员伤亡与巨额财产损失. 近些年尾矿库安全事故发生数量的总体下降趋势充分体现出现代化技术及安全管理方面的进步,然而重大事故发生频次却不减反增,2015年巴西Samarco铁矿与2014年加拿大Mount Polley重大溃坝事故及其惨重后果,再次为尾矿库安全敲响警钟. 我国现存尾矿库8869座,含"头顶库"1425座,安全形势复杂. 本文在收集大量相关领域文献的基础上,聚焦尾矿库溃坝灾害防控体系中的安全监测、灾害预警与应急准备、安全管理与标准规范这三大方面核心内容,分别综述对比国内外现状及前沿进展,探讨分析我国当前所面临的问题并尝试提出改进建议,为尾矿库防灾减灾理论研究与技术革新提供参考. 结果表明:(1)我国尾矿库安全监测标准更高,但仪器耐久性、可靠度与实用性不足,专用监测器件与新技术的研发应用势在必行;(2)灾害预警方法单一且可信度不高,而信息技术融合应用成为发展趋势;(3)应急管理与预警决策需以充分的科学论证为基础,当前研究在试验手段与计算方法上存在局限;(4)我国拥有完善的安全管理标准规范体系,但在安全等别划分、全生命周期管理、主体变更、事故总结等方面相对欠缺.
  • [2] Lottermoser B G. Mine Wastes:Characterization, Treatment and Environmental Impacts. 3rd Ed. Berlin, Heidelberg:Springer, 2010
    [3] Hudson-Edwards K A, Jamieson H E, Lottermoser B G. Mine wastes:past, present, future. Elements, 2011, 7(6):375
    [4] Hudson-Edwards K. Tackling mine wastes. Sci, 2016, 352(6283):288
    [7] Kossoff D, Dubbin W E, Alfredsson M, et al. Mine tailings dams:characteristics, failure, environmental impacts, and remediation. Appl Geochem, 2014, 51:229
    [8] Azam S, Li Q R. Tailings dam failures:a review of the last one hundred years. Geotech News, 2010, 28(4):50
    [9] ICOLD, UNEP. Tailings Dams Risk of Dangerous Occurrences, Lessons Learnt From Practical Experiences (Bulletin 121). France:International Commission on Large Dams, 2001
    [10] Bowker L N, Chambers D M. The risk, public liability, & economics of tailings storage facility failures[EB/OL]. Earthwork Action (2015-07-21)[2017-10-19]. https://earthworks.org/cms/assets/uploads/archive/files/pubs-others/BowkerChambers-RiskPublicLiability_EconomicsOfTailingsStorageFacility%20Failures-23Jul15.pdf
    [13] Byrne P, Hudson-Edwards K, Macklin M, et al. The long-term environmental impacts of the Mount Polley mine tailings spill//EGU General Assembly Conference Abstracts. British Columbia, 2015
    [14] Mei G D. Quantitative assessment method study based on weakness theory of dam failure risks in tailings dam. Procedia Eng, 2011, 26:1827
    [19] Scott M D, Lo R C, Thavaraj T. Use of instrumentation to safeguard stability of a tailings dam//Seventh International Symposium on Field Measurements in Geomechanics. Boston, 2007:1
    [20] Song Y S, Cho Y C, Kim K S. Monitoring and stability analysis of a coal mine waste heap slope in Korea. Eng Geol Soc Terr, 2015, 2:217
    [21] Rashed M N. Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. J Hazard Mater, 2010, 178(1-3):739
    [22] Buselli G, Lu K L. Groundwater contamination monitoring with multichannel electrical and electromagnetic methods. J Appl Geophys, 2001, 48(1):11
    [23] Goldcorp. Tailings monitoring embraces innovation[EB/OL]. Goldcorp (2016-06-05)[2017-12-18]. https://blog.goldcorp.com/2016/06/05/tailings-monitoring-embraces-innovation
    [24] Vanden Berghe J F, Ballard J C, Wintgens J F, et al. Geotechnical risks related to tailings dam operations//Proceedings Tailings and Mine Waste. Vancouver, 2011
    [25] Zandarín M T, Oldecop L A, Rodríguez R, et al. The role of capillary water in the stability of tailing dams. Eng Geol, 2009, 105(1-2):108
    [26] Coulibaly Y, Belem T, Cheng L Z. Numerical analysis and geophysical monitoring for stability assessment of the Northwest tailings dam at Westwood Mine. Int J Min Sci Technol, 2017, 27(4):701
    [27] Sjödahl P, Dahlin T, Johansson S. Using resistivity measurements for dam safety evaluation at Enemossen tailings dam in southern Sweden. Environ Geol, 2005, 49(2):267
    [28] Colombo D, MacDonald B. Using advanced InSAR techniques as a remote tool for mine site monitoring//Proceedings of the SAIMM International Symposium on Slope Stability in Open Pit Mining and Civil Engineering. Cape Town, 2015:1
    [29] Palmer J. Creeping earth could hold secret to deadly landslides. Nature, 2017, 548(7668):384
    [30] Schmidt B, Malgesini M, Turner J, et al. Satellite monitoring of a large tailings storage facility//Proceedings Tailings and Mine Waste. Vancouver, 2015
    [31] Emel J, Plisinski J, Rogan J. Monitoring geomorphic and hydrologic change at mine sites using satellite imagery:the Geita Gold Mine in Tanzania. Appl Geography, 2014, 54:243
    [32] Minacapilli M, Cammalleri C, Ciraolo G, et al. Thermal inertia modeling for soil surface water content estimation:a laboratory experiment. Soil Sci Soc Am J, 2012, 76(1):92
    [33] Zwissler B, Buikema N, Oommen T, et al. Thermal remote sensing for mine tailings strength characterization//Geo-Congress 2014:Geo-characterization and Modeling for Sustainability. Atlanta, 2014:979
    [34] Colomina I, Molina P. Unmanned aerial systems for photogrammetry and remote sensing:a review. ISPRS J Photogrammetry Remote Sensing, 2014, 92:79
    [35] Pajares G. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs). Photogrammetric Eng Remote Sensing, 2015, 81(4):281
    [36] Peternel T, Kumelj Š, Oštir K, et al. Monitoring the Potoška planina landslide (NW Slovenia) using UAV photogrammetry and tachymetric measurements. Landslides, 2017, 14(1):395
    [52] Azzam R, Arnhardt C, Fernandez-Steeger T M. Monitoring and early warning of slope instabilities and deformations by sensor fusion in self-organized wireless ad-hoc sensor networks//Proceedings of the International Symposium and the 2nd AUN/Seed-Net Regional Conference on Geo-Disaster Mitigation in ASEAN-Protecting Life from Geo-Disaster and Environmental Hazards. Yogyakarta, 2010:163
    [53] Peters E T, Malet J P, Bogaard T A. Multi-sensor monitoring network for real-time landslide forecasts in early warning systems//Proceeding Conference on Mountain Risks:Bringing Science to Society. Florence, 2010:335
    [54] Intrieri E, Gigli G, Mugnai F, et al. Design and implementation of a landslide early warning system. Eng Geol, 2012, 147-148:124
    [55] Capparelli G, Tiranti D. Application of the MoniFLaIR early warning system for rainfall-induced landslides in Piedmont region (Italy). Landslides, 2010, 7(4):401
    [56] Intrieri E, Gigli G, Casagli N, et al. Brief communication "Landslide Early Warning System:toolbox and general concepts". Nat Hazards Earth Syst Sci, 2013, 13(1):85
    [57] Krzhizhanovskaya V V, Shirshov G S, Melnikova N B, et al. Flood early warning system:design, implementation and computational modules. Procedia Comput Sci, 2011, 4:106
    [58] Zare M, Pourghasemi H R, Vafakhah M, et al. Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model:a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arab J Geosci, 2013, 6(8):2873
    [61] Dong L J, Shu W W, Sun D Y, et al. Pre-alarm system based on real-time monitoring and numerical simulation using internet of things and cloud computing for tailings dam in mines. IEEE Access, 2017, 5:21080
    [68] Dong L J, Sun D Y, Li X B. Theoretical and case studies of interval nonprobabilistic reliability for tailing dam stability. Geofluids, 2017, 2017:8745894
    [70] Helbing D, Farkas I, Vicsek T. Simulating dynamical features of escape panic. Nature, 2000, 407(6803):487
    [72] MAC(The Mining Association of Canada). A Guide to the Management of Tailings Facilities. 3rd Ed. Ottawa:MAC, 2017
    [73] CDA (Canadian Dam Association). Summary report:workshop on emergency management for dams[EB/OL]. Canadian Dam Association (2015-02-25)[2017-11-01]. https://cda.ca/EN/Announcements/Archives/Emergency_Mgmt_Workshop.aspx
    [75] International Council on Mining & Metals. Position statement on preventing catastrophic failure of tailings storage facilities[EB/OL]. ICMM (2016-12-01)[2017-12-11]. https://www.icmm.com/website/publications/pdfs/commitments/2016_icmm-ps_tailings-governance.pdf
    [84] Schoenberger E. Environmentally sustainable mining:the case of tailings storage facilities. Resour Policy, 2016, 49:119
    [86] Golder Associates. Review of tailings management guidelines and recommendations for improvement[EB/OL]. ICMM (International Council on Mining and Metals) (2016-12-01)[2017-11-10]. https://www.icmm.com/website/publications/pdfs/tailings/161205_review-of-tailings-management-guidelines.pdf
  • 加载中
计量
  • 文章访问数:  1852
  • HTML全文浏览量:  603
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-02

目录

    /

    返回文章
    返回