• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含水率对放矿松动体形态的细观影响

李涛 吴爱祥 王洪江 尹升华 冯云田

李涛, 吴爱祥, 王洪江, 尹升华, 冯云田. 含水率对放矿松动体形态的细观影响[J]. 工程科学学报, 2018, 40(6): 665-672. doi: 10.13374/j.issn2095-9389.2018.06.003
引用本文: 李涛, 吴爱祥, 王洪江, 尹升华, 冯云田. 含水率对放矿松动体形态的细观影响[J]. 工程科学学报, 2018, 40(6): 665-672. doi: 10.13374/j.issn2095-9389.2018.06.003
LI Tao, WU Ai-xiang, WANG Hong-jiang, YIN Sheng-hua, FENG Yun-tian. Influence of moisture content on the shape of isolated movement zone in mesoscale[J]. Chinese Journal of Engineering, 2018, 40(6): 665-672. doi: 10.13374/j.issn2095-9389.2018.06.003
Citation: LI Tao, WU Ai-xiang, WANG Hong-jiang, YIN Sheng-hua, FENG Yun-tian. Influence of moisture content on the shape of isolated movement zone in mesoscale[J]. Chinese Journal of Engineering, 2018, 40(6): 665-672. doi: 10.13374/j.issn2095-9389.2018.06.003

含水率对放矿松动体形态的细观影响

doi: 10.13374/j.issn2095-9389.2018.06.003
基金项目: 

2016YFC0600709)

国家重点研发计划资助项目(2016YFC0600704

详细信息
  • 中图分类号: TD853

Influence of moisture content on the shape of isolated movement zone in mesoscale

  • 摘要: 为从细观尺度研究矿岩含水率对自然崩落法放矿松动体形态的影响,对非饱和矿岩颗粒间的受力进行了分析,并分别将放矿场内细颗粒流与大块离散矿岩利用格子波尔兹曼法与离散元法处理,基于格子波尔兹曼法-离散元法耦合算法建立自然崩落法放矿模型,得出含水率与放矿松动体形态间的关系,并通过将模拟结果与已有研究结论进行对比分析,验证了基于格子波尔兹曼法-离散元法耦合算法的放矿模型准确性及可靠性.研究表明:矿岩含水率对放矿松动体形态影响显著,在同等矿岩放出质量分数情况下,随着含水率的增大,放矿松动体高度呈先增大后减小的趋势,放矿松动体形态先逐渐变为细长型再逐渐恢复,放矿松动体形态变化的含水率临界值在10%左右.
  • [2] Melo F, Vivanco F, Fuentes C. Calculated isolated extracted and movement zones compared to scaled models for block caving. Int J Rock Mech Min Sci, 2009, 46(4):731
    [3] Castro R, Trueman R, Halim A. A study of isolated draw zones in block caving mines by means of a large 3D physical model. Int J Rock Mech Min Sci, 2007, 44(6):860
    [4] Vivanco F, Watt T, Melo F. The 3D shape of the loosening zone above multiple draw points in block caving through plasticity model with a dilation front. Int J Rock Mech Min Sci, 2011, 48(3):406
    [9] Wu A X, Sun Y Z. Granular Dynamic Theory and its Application. Beijing:Metallurgical Industry Press, 2007
    [10] Campbell C S. Granular material flows-an overview. Powder Technol, 2006, 162(3):208
    [11] Ketterhagen W R, Curtis J S, Wassgren C R, et al. Modeling granular segregation in flow from quasi-three-dimensional, wedgeshaped hoppers. Powder Technol, 2008, 179(3):126
    [14] Pierce M E. A Model for Gravity Flow of Fragmented Rock in Block Caving Mines[Dissertation]. Queensland:University of Queensland, 2010
    [15] Cundall P A. A computer model for simulating progressive largescale movements in block rock mechanics//Proceedings of the Symposium of the International Society of Rock Mechanics. Nancy, 1971:129
    [16] Leonardi C R. Development of a Computational Framework Coupling the Non-Newtonian Lattice Boltzmann Method and the Discrete Element Method with Application to Block Caving[Dissertation]. Swansea:Swansea University, 2009
    [17] Han K, Feng Y T, Owen D R J. Coupled lattice Boltzmann and discrete element modelling of fluid-particle interaction problems. Comput Struct, 2007, 85(11-14):1080
    [18] Han Y H, Cundall P. Verification of two-dimensional LBM-DEM coupling approach and its application in modeling episodic sand production in borehole. Petroleum, 2017, 3(2):179
    [19] McMinn J. Identifying soils by a triangle based on unified soil classification system//Papers on Soils 1959 Meetings. West Conshohocken, 1960:369
    [24] Noble D R, Torczynski J R. A lattice-Boltzmann method for partially saturated computational cells. Int J Mod Phys C, 1998, 9:1189
  • 加载中
计量
  • 文章访问数:  465
  • HTML全文浏览量:  179
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-05

目录

    /

    返回文章
    返回