• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电芯用电极对温度与SOC的敏感性

安富强 周伟男 李平

安富强, 周伟男, 李平. 锂离子电芯用电极对温度与SOC的敏感性[J]. 工程科学学报, 2018, 40(6): 729-734. doi: 10.13374/j.issn2095-9389.2018.06.011
引用本文: 安富强, 周伟男, 李平. 锂离子电芯用电极对温度与SOC的敏感性[J]. 工程科学学报, 2018, 40(6): 729-734. doi: 10.13374/j.issn2095-9389.2018.06.011
AN Fu-qiang, ZHOU Wei-nan, LI Ping. Sensitivity of electrodes in a lithium ion cell to temperature and SOC[J]. Chinese Journal of Engineering, 2018, 40(6): 729-734. doi: 10.13374/j.issn2095-9389.2018.06.011
Citation: AN Fu-qiang, ZHOU Wei-nan, LI Ping. Sensitivity of electrodes in a lithium ion cell to temperature and SOC[J]. Chinese Journal of Engineering, 2018, 40(6): 729-734. doi: 10.13374/j.issn2095-9389.2018.06.011

锂离子电芯用电极对温度与SOC的敏感性

doi: 10.13374/j.issn2095-9389.2018.06.011
基金项目: 

国家自然科学基金资助项目(51172024)

详细信息
  • 中图分类号: U469.7

Sensitivity of electrodes in a lithium ion cell to temperature and SOC

  • 摘要: 采用阻抗谱技术,对2.8 A·h 18650电芯进行拆解解析,单独分析正负极电极在不同温度下(25、10和-5℃),不同荷电状态下的阻抗变化.结果表明:在不同温度下,在20%~100%荷电状态下,负极作为控制电极,其反应电化学阻抗是正极的数倍,尤其是在-5℃,达到了4倍,负极是电芯一致性问题中动力学因素的控制主因;在0~20%荷电状态下,在10和25℃下,正极的反应电化学阻抗要远远大于负极,正极成为控制端.结合目前电动车上动力电池的实用荷电状态一般在20%~95%,针对该2.8 A·h 18650电芯,提高负极电极的一致性是核心所在.同理,对其他类型电芯而言,在电芯设计过程中,在综合考虑成本的前提下,需要更有针对性地提高正负极的一致性标准,从而更为有效地改善整个电芯产品的一致性.
  • [1] Goodenough J B, Park K S. The Li-ion rechargeable battery:a perspective. J Am Chem Soc, 2013, 135(4):1167
    [2] Scrosati B, Garche J. Lithium batteries:status, prospects and future. J Power Sources, 2010, 195(9):2419
    [3] Wu H, Cui Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today, 2012, 7(5):414
    [4] Dai Y L, Srinivasan V. On graded electrode porosity as a design tool for improving the energy density of batteries. J Electrochem Soc, 2016, 163(3):A406
    [6] Baumhöfer T, Brühl M, Rothgang S, et al. Production caused variation in capacity aging trend and correlation to initial cell performance. J Power Sources, 2014, 247:332
    [9] An F Q, Huang J, Wang C Y, et al. Cell sorting for parallel lithium-ion battery systems:evaluation based on an electric circuit model. J Energy Storage, 2016, 6:195
    [10] Jannesari H, Emami M D, Ziegler C. Effect of electrolyte transport properties and variations in the morphological parameters on the variation of side reaction rate across the anode electrode and the aging of lithium ion batteries. J Power Sources, 2011, 196(22):9654
    [11] Santhanagopalan S, White R E. Quantifying cell-to-cell variations in lithium ion batteries. Int J Electrochem, 2012, 2012:395838-1
    [12] Kenney B, Darcovich K, MacNeil D D, et al. Modelling the impact of variations in electrode manufacturing on lithium-ion battery modules. J Power Sources, 2012, 213:391
    [13] An F Q, Chen L F, Huang J, et al. Rate dependence of cell-tocell variations of lithium-ion cells. Sci Rep, 2016, 6:35051
    [14] Zhang J B, Huang J, Chen L F, et al. Lithium-ion battery discharge behaviors at low temperatures and cell-to-cell uniformity. J Autom Safety Energy, 2014, 5(4):391
  • 加载中
计量
  • 文章访问数:  521
  • HTML全文浏览量:  183
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-31

目录

    /

    返回文章
    返回