• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁酸钙与赤铁矿非等温还原动力学

李刚 丁成义 宣森炜 吕学伟 吴珊珊

李刚, 丁成义, 宣森炜, 吕学伟, 吴珊珊. 铁酸钙与赤铁矿非等温还原动力学[J]. 工程科学学报, 2018, 40(11): 1317-1324. doi: 10.13374/j.issn2095-9389.2018.11.005
引用本文: 李刚, 丁成义, 宣森炜, 吕学伟, 吴珊珊. 铁酸钙与赤铁矿非等温还原动力学[J]. 工程科学学报, 2018, 40(11): 1317-1324. doi: 10.13374/j.issn2095-9389.2018.11.005
LI Gang, DING Cheng-yi, XUAN Sen-wei, LÜ Xue-wei, WU Shan-shan. Non-isothermal reduction kinetics of calcium ferrite and hematite[J]. Chinese Journal of Engineering, 2018, 40(11): 1317-1324. doi: 10.13374/j.issn2095-9389.2018.11.005
Citation: LI Gang, DING Cheng-yi, XUAN Sen-wei, LÜ Xue-wei, WU Shan-shan. Non-isothermal reduction kinetics of calcium ferrite and hematite[J]. Chinese Journal of Engineering, 2018, 40(11): 1317-1324. doi: 10.13374/j.issn2095-9389.2018.11.005

铁酸钙与赤铁矿非等温还原动力学

doi: 10.13374/j.issn2095-9389.2018.11.005
基金项目: 

重庆市铁矿石超声波辅助烧结技术研究资助项目(cstc2014kjrc-qnrc90001)

国家自然科学基金资助项目(51544203)

详细信息
  • 中图分类号: TF521+.1

Non-isothermal reduction kinetics of calcium ferrite and hematite

  • 摘要: 采用非等温热重的方法,在30% CO+70% N2(体积分数)气氛下,以10 K·min-1升温至1123 K的过程中,比较了铁酸钙与赤铁矿的逐级还原过程及其还原动力学.结果表明:铁酸钙和赤铁矿开始还原温度分别为873 K和623 K;由反应速率与反应度的关系及分阶段X射线衍射物相分析发现,铁酸钙还原过程为两段式反应(CaO·Fe2O3→2CaO·Fe2O3→Fe),而赤铁矿还原过程为传统的三段式反应(Fe2O3→Fe3O4→FeO→Fe).通过Freeman-Carroll法计算得知铁酸钙和赤铁矿的还原平均活化能分别为49.88和43.74 kJ·mol-1;铁酸钙还原过程符合随机成核随后生长模型,动力学模式函数为Avrami-Erofeev方程,其积分形式为[-ln (1-α)]n;而赤铁矿还原过程动力学机理分为两部分,在还原度α为0.1~0.5时,为三级化学反应模型,模式函数积分形式为1-(1-α)3;在α为0.5~0.9时,符合二维圆柱形扩散模型,动力学模式函数为Valensi方程,其积分形式为α+(1-α)ln (1-α).
  • [3] Decker B F, Kasper J S. The structure of calcium ferrite. Acta Crystallogr, 1957, 10(4):332
    [4] Chessin H, Turkdogan E T. A crystallographic investigation of calcium diferrite. J Am Ceram Soc, 1962, 45(12):597
    [5] Sasaki M, Nakazawa T. On the formation of calcium ferrite in sintered ore. Tetsu-to-Hagané, 1968, 54(12):1217
    [6] Sato S, Kikuchi T, Yoshii C. Reduction tests of synthetic calcium ferrites:in ternary systems of CaO-FeO-Fe2O3. Bull Faculty Eng Hokkaido Univ, 1971, 61:39
    [7] El-Geassy A A. Reduction of CaO and/or MgO-doped Fe2O3 compacts with carbon-monoxide at 1173-1473 K. ISIJ Int, 1996, 36(11):1344
    [8] von Bogdandy L, Engell H J. The Reduction of Iron Ores:Scientific Basis and Technology.1st Ed. Berlin:Springer-Verlag Berlin Heudelberg GmbH, 1971
    [9] Ding C Y, Lü X W, Xuan S W, et al. Isothermal reduction kinetics of powdered hematite and calcium ferrite with CO-N2 gas mixtures. ISIJ Int, 2016, 56(12):2118
    [10] Osman M A, Manning F S, Philbrook W O. Reduction of single particles and packed beds of hematite with carbon monoxide. AIChE J, 1966, 12(4):685
    [11] Guo D B, Hu M, Pu C X, et al. Kinetics and mechanisms of direct reduction of iron ore-biomass composite pellets with hydrogen gas. Int J Hydrogen Energy, 2015, 40(14):4733
    [12] Longbottom R J, Kolbeinsen L. Iron ore reduction with CO and H2 gas mixtures-Thermodynamic and kinetic modelling//Proceedings of the 4th Ulcos Seminar-New Direct Reduction (DR). Maizieres-les-Metz, 2008:1
    [13] Szekely J, Evans J W, Hong Y S. Gas-solid Reactions. 1st Ed. Salt Lake City:Academic Press, 1976
    [14] McCune R C, Wynblatt P. Calcium segregation to a magnesium oxide (100) surface. J Am Ceram Soc, 1983, 66(2):111
    [15] Ma R P, Felder R M, Ferrell J K. Modeling a pilot-scale fluidized bed coal gasification reactor. Fuel Process Technol, 1988, 19(3):265
    [16] Málek J. A computer program for kinetic analysis of non-isothermal thermoanalytical data. Thermochim Acta, 1989, 138(2):337
    [17] Málek J, Smr AčG2 ka V. The kinetic analysis of the crystallization processes in glasses. Thermochim Acta, 1991, 186(1):153
    [18] Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta, 1992, 200:257
    [19] Málek J, Criado J M. A simple method of kinetic model discrimination. Part 1. Analysis of differential non-isothermal data. Thermochim Acta, 1994, 236:187
    [20] Málek J. A computer program for kinetic analysis of non-isothermal thermoanalytical data. Thermochim Acta, 1989, 138(2):337
    [21] Coats A W, Redfern J P. Kinetic parameters from thermogravimetric data. Nature, 1964, 201(4914):68
    [22] Avrami M. Kinetics of phase change. Ⅱ transformation-time relations for random distribution of nuclei. J Chem Phys, 1940, 8(2):212
    [23] Avrami M. Kinetics of phase change. I general theory. J Chem Phys, 1939, 7(12):1103
    [24] Avrami M. Granulation, phase change, and microstructure kinetics of phase change. Ⅲ. J Chem Phys, 1941, 9(2):177
    [25] Sayama S, Ueda Y, Yokoyama S, et al. Carbon deposition in the reduction of iron ore by CO under high pressure. Tetsu-to-Hagane, 1975, 61(8):2115
    [26] Paananen T, Heikkinen E P, Kokkonen T, et al. Preparation of mono-, di-and hemicalcium ferrite phases via melt for reduction kinetics investigations. Steel Res Int, 2009, 80(6):402
    [28] Nasr M I, Omar A A, Khedr M H, et al. Effect of nickel oxide doping on the kinetics and mechanism of iron oxide reduction. ISIJ Int, 1995, 35(9):1043
    [29] El-Geassy A A. Gaseous reduction of Fe2O3 compacts at 600 to 1050℃. J Mater Sci, 1986, 21(11):3889
    [30] El-Geassy A A. Stepwise reduction of CaO and/or MgO doped-Fe2O3 compacts to magnetite then subsequently to iron at 1173-1473 K. ISIJ Int, 1997, 37(9):844
    [31] Murayama T, Ono Y, Kawai Y. Step-wise reduction of hematite pellets with CO-CO2 gas mixtures. Tetsu-to-Hagané, 1977, 63(7):1099
    [32] Pan W, Wu K, Zhao X, et al. Reduction kinetics of Shougang iron ore sinter. J Univ Sci Technol Beijing, 2013, 35(1):35
  • 加载中
计量
  • 文章访问数:  497
  • HTML全文浏览量:  104
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-15

目录

    /

    返回文章
    返回