• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝棒低银铅合金表面陶瓷化复合阳极的制备与性能

闫文凯 陈步明 冷和 黄惠 郭忠诚 徐瑞东

闫文凯, 陈步明, 冷和, 黄惠, 郭忠诚, 徐瑞东. 铝棒低银铅合金表面陶瓷化复合阳极的制备与性能[J]. 工程科学学报, 2019, 41(10): 1315-1323. doi: 10.13374/j.issn2095-9389.2018.11.04.002
引用本文: 闫文凯, 陈步明, 冷和, 黄惠, 郭忠诚, 徐瑞东. 铝棒低银铅合金表面陶瓷化复合阳极的制备与性能[J]. 工程科学学报, 2019, 41(10): 1315-1323. doi: 10.13374/j.issn2095-9389.2018.11.04.002
YAN Wen-kai, CHEN Bu-ming, LENG He, HUANG Hui, GUO Zhong-cheng, XU Rui-dong. Preparation and properties of Al-rod-Pb-0.2%Ag composite anode by surface ceramization[J]. Chinese Journal of Engineering, 2019, 41(10): 1315-1323. doi: 10.13374/j.issn2095-9389.2018.11.04.002
Citation: YAN Wen-kai, CHEN Bu-ming, LENG He, HUANG Hui, GUO Zhong-cheng, XU Rui-dong. Preparation and properties of Al-rod-Pb-0.2%Ag composite anode by surface ceramization[J]. Chinese Journal of Engineering, 2019, 41(10): 1315-1323. doi: 10.13374/j.issn2095-9389.2018.11.04.002

铝棒低银铅合金表面陶瓷化复合阳极的制备与性能

doi: 10.13374/j.issn2095-9389.2018.11.04.002
基金项目: 

国家自然科学基金资助项目(51564029,51874154,51504111);云南省技术创新人才培养对象资助项目(2019HB111);昆明理工大学分析测试基金资助项目(2017T20090100,2017M20162102014)

详细信息
  • 中图分类号: TG142.71

Preparation and properties of Al-rod-Pb-0.2%Ag composite anode by surface ceramization

  • 摘要: 为获得一种锌电积用低成本、低析氧电位和高催化活性的阳极,在铝棒表面通过挤压复合技术包覆Pb-0.2% Ag合金得到Al棒Pb-0.2% Ag阳极.在含氟的硫酸溶液中,通过阳极氧化在Pb-0.2% Ag合金和Al棒Pb-0.2% Ag合金阳极表面形成具有高催化性能的膜层,采用显微图像分析仪和数显显微硬度计表征了膜层的厚度及硬度,并通过电子拉伸试验对比了两种阳极的极限抗拉强度.采用X射线衍射、扫描电子显微镜、循环伏安法、阳极极化和交流阻抗法等技术手段研究了Al棒Pb-0.2% Ag与Pb-0.2% Ag阳极表面氧化膜层的物相、形貌以及电化学性能.结果表明:Al棒Pb-0.2% Ag阳极相比Pb-0.2% Ag阳极表面易生成致密较厚的氧化膜层,且膜层硬度提升了41.64%,其氧化膜层主要物相均为电催化活性良好的β-PbO2.新型阳极的极限抗拉强度是传统阳极的1.3倍,大大改善了阳极材料的机械性能.阳极极化曲线数据显示Al棒Pb-0.2% Ag/PbO2阳极在电积锌体系中具有较低的析氧电位(1.35 V vs MSE,500 A·m-2)和较高的交换电流密度(7.079×10-5 A·m-2).循环伏安曲线和交流阻抗数据显示Al棒Pb-0.2% Ag/PbO2阳极具有较高的电催化活性、较大的表面粗糙度和较小的电荷传质电阻.在电积锌实验中,栅栏型Al棒Pb-0.2% Ag/PbO2阳极相比传统Pb-0.2% Ag阳极平均槽电压下降了75 mV,而且大大减少了阳极泥的产生.
  • [2] Mohammadi M, Alfantazi A. The performance of Pb-MnO2 and Pb-Ag anodes in 2 Mn(II)-containing sulphuric acid electrolyte solutions. Hydrometallurgy, 2015, 153:134
    [3] Clancy M, Bettles C J, Stuart A, et al. The influence of alloying elements on the electrochemistry of lead anodes for electrowinning of metals:a review.Hydrometallurgy, 2013, 131-132:144
    [4] Lai Y Q, Jiang L X, Li J, et al.A novel porous Pb-Ag anode for energy-saving in zinc electro-winning:Part I:laboratory preparation and properties. Hydrometallurgy, 2010, 102(1-4):73
    [5] Zhong X C, Wang R X, Xu Z F, et al. Influence of Mn2+ on the performance of Pb-Ag anodes in fluoride/chloride-containing H2SO4 solutions. Hydrometallurgy, 2017, 174:195
    [6] Paliphot S, Chairuangsri T, Yottawee N, et al. Surface structure of Pb-0.5% Ag anode used in zinc electrowinning. Chiang Mai J Sci, 2006, 33(1):67
    [7] Zhang W S, Cheng C Y. Manganese metallurgy review. Part III:Manganese control in zinc and copper electrolytes. Hydrometallurgy, 2007, 89(3-4):178
    [8] Rodrigues J, Garbers D, Meyer E H O. Recent developments in the zincor cell house. Can Metall Q, 2001, 40(4):441
    [9] Ma R X, Cheng S Y, Zhang X Y, et al. Oxygen evolution and corrosion behavior of low-MnO2-content Pb-MnO2 composite anodes for metal electrowinning. Hydrometallurgy, 2016, 159:6
    [10] Xu R D, Huang L P, Zhou J F, et al. Effects of tungsten carbide on electrochemical properties and microstructural features of Al/Pb-PANI-WC composite inert anodes used in zinc electrowinning. Hydrometallurgy, 2012, 125-126:8
    [11] Zhang Y C, Chen B M, Yang H T, et al.Anodic behavior and microstructure of Al/Pb-Ag anode during zinc electrowinning. Trans Nonferrous Met Soc China, 2014, 24(3):893
    [12] Yamamoto Y, Fumino K, Ueda M, et al. A potentiodynamic study of the lead electrode in sulphuric acid solution. Electrochim Acta, 1992, 37(2):199
    [13] Dobrev T, Valchanova I, Stefanov Y, et al. Investigations of new anodic materials for zinc electrowinning. Trans Inst Met Finish, 2009, 87(3):136
    [14] Yang H T, Guo Z C, Chen B M, et al. Electrochemical behavior of rolled Pb-0.8%Ag anodes in an acidic zinc sulfate electrolyte solution containing Cl- ions. Hydrometallurgy, 2014, 147-148:148
    [15] Lai Y Q, Li Y, Jiang L X, et al. Electrochemical behaviors of co-deposited Pb/Pb-MnO2 composite anode in sulfuric acid solution-Tafel and EIS investigations. J Electroanal Chem, 2012, 671:16
    [17] Kapalka A, Fóti G, Comninellis C. Determination of the Tafel slope for oxygen evolution on boron-doped diamond electrodes. Electrochem Commun, 2008, 10(4):607
    [18] Rashkov S, Stefanov Y, Noncheva Z, et al. Investigation of the processes of obtaining plastic treatment and electrochemical behaviour of lead alloys in their capacity as anodes during the electroextraction of zinc II. Electrochemical formation of phase layers on binary Pb-Ag and Pb-Ca, and ternary Pb-Ag-Ca alloys in a sulphuric-acid electrolyte for zinc electroextraction. Hydrometallurgy, 1996, 40(3):319
    [19] Lassali T A F, Boodts J F C, Bulhoes L O S.Faradaic impedance investigation of the deactivation mechanism of Ir-based ceramic oxides containing TiO2 and SnO2. J Appl Electrochem, 2000, 30(5):625
    [20] Xu L K, Santlebury J D. Microstructure and electrochemical properties of IrO2 Ta2O5-coated titanium anodes. J Electrochem Soc, 2003, 150(6):B254
    [22] Alves V A, da Silva L A, Boodts J F C. Surface characterisation of IrO2/TiO2/CeO2 oxide electrodes and Faradaic impedance investigation of the oxygen evolution reaction from alkaline solution. Electrochim Acta, 1998, 44(8-9):1525
  • 加载中
计量
  • 文章访问数:  489
  • HTML全文浏览量:  172
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-04

目录

    /

    返回文章
    返回