• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

赤铁矿的自载体作用及对浮选的影响

李东 印万忠 孙春宝 张瑞洋

李东, 印万忠, 孙春宝, 张瑞洋. 赤铁矿的自载体作用及对浮选的影响[J]. 工程科学学报, 2019, 41(11): 1397-1404. doi: 10.13374/j.issn2095-9389.2018.11.05.004
引用本文: 李东, 印万忠, 孙春宝, 张瑞洋. 赤铁矿的自载体作用及对浮选的影响[J]. 工程科学学报, 2019, 41(11): 1397-1404. doi: 10.13374/j.issn2095-9389.2018.11.05.004
LI Dong, YIN Wan-zhong, SUN Chun-bao, ZHANG Rui-yang. The self-carrier effect of hematite in the flotation[J]. Chinese Journal of Engineering, 2019, 41(11): 1397-1404. doi: 10.13374/j.issn2095-9389.2018.11.05.004
Citation: LI Dong, YIN Wan-zhong, SUN Chun-bao, ZHANG Rui-yang. The self-carrier effect of hematite in the flotation[J]. Chinese Journal of Engineering, 2019, 41(11): 1397-1404. doi: 10.13374/j.issn2095-9389.2018.11.05.004

赤铁矿的自载体作用及对浮选的影响

doi: 10.13374/j.issn2095-9389.2018.11.05.004
基金项目: 国家自然科学基金资助项目(51904020);中国博士后科学基金资助项目(2019M660466);中央高校基本科研业务费资助项目(FRF-TP-18-082A1)
详细信息
    通讯作者:

    E-mail:ldwdtxwd@163.com

  • 中图分类号: TD923

The self-carrier effect of hematite in the flotation

More Information
  • 摘要: 通过单矿物浮选试验、光学显微镜分析、E-DLVO理论计算、团聚动力学分析等研究了油酸钠浮选体系下赤铁矿浮选过程中的自载体作用。单矿物浮选试验表明,粗粒赤铁矿(−106 + 45 μm)的可浮性较好,当油酸钠用量超过15 mg·L−1时,回收率可达到90%以上,而细粒赤铁矿(−18 μm)的浮选回收率、浮选速率则较低;当粗−细赤铁矿中粗粒和细粒的质量近似相等时,粗粒的“自载体”效果最强,浮选回收率增加的也最明显,但粗粒过量则会导致粗粒对细粒赤铁矿浮选的强化作用减弱。光学显微镜分析和E-DLVO理论计算表明,粗−细赤铁矿颗粒间的相互作用能高于细粒赤铁矿间的相互作用能,与细粒赤铁矿相比,粗−细赤铁矿间更容易发生团聚,这也是粗粒能够强化细粒赤铁矿浮选(自载体作用)的主要原因。但过量的粗粒赤铁矿会增强其浮选过程中的“磨削、剪切”作用,导致粗粒的“自载体”效果减弱,浮选回收率降低。
  • 图  1  赤铁矿的X射线衍射图

    Figure  1.  X-ray diffraction spectrum of hematite

    图  2  赤铁矿的粒度分布图

    Figure  2.  Particle size distribution of hematite

    图  3  Siwek-Top浮选柱示意图

    Figure  3.  Schematic of Siwek-Top flotation column

    图  4  矿浆pH值对赤铁矿浮选的影响(油酸钠,10 mg·L−1

    Figure  4.  Effects of slurry pH on hematite flotation (sodium oleate, 10 mg·L−1)

    图  5  粒度对赤铁矿浮选的影响. (a)回收率随油酸钠用量变化的关系曲线(pH 9.0);(b)回收率随浮选时间变化的关系曲线(pH 9.0;油酸钠用量,15 mg·L−1

    Figure  5.  Influence of particle size on hematite flotation: (a) the recovery as a function of sodium oleate concentration (pH 9.0); (b) the recovery as a function of flotation time (pH 9.0; sodium oleate, 15 mg·L−1)

    图  6  粗−细赤铁矿中粗粒的含量对浮选的影响(pH 9.0;油酸钠,15 mg·L−1)

    Figure  6.  Effect of coarse particle mass fraction on the final recovery of fine-coarse hematite mixtures (pH 9.0; sodium oleate, 15 mg·L−1)

    图  7  赤铁矿颗粒悬浮液的光学显微镜图片(pH 9.0). (a)细粒赤铁矿(油酸钠质量浓度:15 mg·L−1;(b)粗−细赤铁矿(粗粒与细粒的质量比为1∶1)(油酸钠质量浓度:15 mg·L−1);(c)细粒赤铁矿(油酸钠质量浓度:30 mg·L−1);(d)粗粒赤铁矿(油酸钠质量浓度:15 mg·L−1

    Figure  7.  Optical microscopic image of treated hematite particle suspensions (pH 9.0): (a) fine hematite after conditioning with 15 mg·L−1 sodium oleate; (b) a fine and coarse hematite mixture at 1∶1 mass ratio after conditioning with 15 mg·L−1 sodium oleate; (c) fine hematite after conditioning with 30 mg·L−1 sodium oleate; (d) coarse hematite after conditioning with 30 mg·L−1 sodium oleate

    图  8  赤铁矿的表面性质. (a) zeta电位与pH值的关系曲线; (b) 接触角随时间变化的关系曲线

    Figure  8.  Surface characteristics of hematite: (a) zeta potentials in the absence and presence of sodium oleate as a function of pH value; (b) the contact angle in distilled water as a function of time

    图  9  赤铁矿颗粒间总的相互作用能VTED(粗粒赤铁矿和细粒赤铁矿的直径分别取70 μm和10 μm)

    Figure  9.  Total interaction energy (VTED) between hematite particles of different sizes (the diameter of fine and coarse particles is assumed as 10 and 70 μm, respectively)

    图  10  粗粒赤铁矿“自载体作用”示意图

    Figure  10.  Schematic of coarse hematite self-carrier effect

    表  1  单矿物化学多元素分析结果(质量分数)

    Table  1.   Chemical element analysis results of single minerals %

    TFeFeOSiO2Al2O3MgOCaOPS
    68.170.431.650.280.040.080.020.05
    下载: 导出CSV

    表  2  赤铁矿浮选动力学的拟合方程

    Table  2.   Fitted equation of hematite flotation kinetics

    矿样一级浮选动力学
    拟合方程
    浮选速率常数,
    k/min−1
    相关性系数,
    R2
    粗粒赤铁矿$y = 99.35\left( {1 - {{\rm{e}}^{ - 0.56t}}} \right)$0.560.994
    细粒赤铁矿$y = 54.63\left( {1 - {{\rm{e}}^{ - 0.44t}}} \right)$0.440.998
    下载: 导出CSV

    表  3  水的表面自由能

    Table  3.   Surface free energy of water

    γL/(mJ·m−2)γLd/(mJ·m−2)γL+/(mJ·m−2)γL/(mJ·m−2)
    72.821.825.525.5
    下载: 导出CSV
  • [1] 陈雯. 贫细杂难选铁矿石选矿技术进展. 金属矿山, 2010(5):55

    Chen W. Technological process in processing low-grade fine-grained complicated refractory iron ores. Met Mine, 2010(5): 55
    [2] 任爱军, 孙传尧, 朱阳戈. 变性淀粉在赤铁矿阳离子反浮选脱硅中的抑制性能. 工程科学学报, 2017, 39(12):1815

    Ren A J, Sun C Y, Zhu Y G. Depressing capability of modified starches in the reverse flotation of quartz from hematite with cationic collectors. Chin J Eng, 2017, 39(12): 1815
    [3] Yin W Z, Yang X S, Zhou D P, et al. Shear hydrophobic flocculation and flotation of ultrafine Anshan hematite using sodium oleate. Trans Nonferrous Met Soc China, 2011, 21(3): 652 doi: 10.1016/S1003-6326(11)60762-0
    [4] Li W B, Zhou L B, Han Y X, et al. Effect of carboxymethyl starch on fine-grained hematite recovery by high-intensity magnetic separation: Experimental investigation and theoretical analysis. Powder Technol, 2019, 343: 270 doi: 10.1016/j.powtec.2018.11.024
    [5] Wang L, Peng Y, Runge K, et al. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Miner Eng, 2015, 70: 77 doi: 10.1016/j.mineng.2014.09.003
    [6] Subrahmanyam T V, Forssberg K S E. Fine particles processing: shear-flocculation and carrier flotation-a review. Int J Miner Process, 1990, 30(3-4): 265 doi: 10.1016/0301-7516(90)90019-U
    [7] Ni C, Bu X N, Xia W C, et al. Observing slime-coating of fine minerals on the lump coal surface using particle vision and measurement. Powder Technol, 2018, 339: 434 doi: 10.1016/j.powtec.2018.08.034
    [8] Miettinen T, Ralston J, Fornasiero D. The limits of fine particle flotation. Miner Eng, 2010, 23(5): 420 doi: 10.1016/j.mineng.2009.12.006
    [9] Li D, Yin W Z, Liu Q, et al. Interactions between fine and coarse hematite particles in aqueous suspension and their implications for flotation. Miner Eng, 2017, 114: 74 doi: 10.1016/j.mineng.2017.09.012
    [10] Yao J, Yin W, Gong E. Depressing effect of fine hydrophobic particles on magnesite reverse flotation. Int J Miner Process, 2016, 149: 84 doi: 10.1016/j.minpro.2016.02.013
    [11] Hu Y H, Qiu G Z, Luo L, et al. Carrier flotation of ultrafine particle wolframite. Trans Nonferrous Met Soc China, 1994, 4(4): 10
    [12] Forbes E. Shear, selective and temperature responsive flocculation: a comparison of fine particle flotation techniques. Int J Miner Process, 2011, 99(1-4): 1 doi: 10.1016/j.minpro.2011.02.001
    [13] Shibata J, Fuerstenau D W. Flocculation and flotation characteristics of fine hematite with sodium oleate. Int J Miner Process, 2003, 72(1-4): 25 doi: 10.1016/S0301-7516(03)00085-1
    [14] Li H, Liu M X, Liu Q. The effect of non-polar oil on fine hematite flocculation and flotation using sodium oleate or hydroxamic acids as a collector. Miner Eng, 2018, 119: 105 doi: 10.1016/j.mineng.2018.01.004
    [15] 邱冠周, 胡岳华, 王淀佐. 颗粒间的相互作用和细粒浮选. 长沙: 中南工业大学出版社, 1993

    Qiu G Z, Hu Y H, Wang D Z. Interaction of Particles and Flotation Techniques of Fine Particles. Changsha: Central South University of Technology Press, 1993
    [16] Yin W Z, Li D, Luo X M, et al. Effect and mechanism of siderite on reverse flotation of hematite. Int J Miner Metall Mater, 2016, 23(4): 373 doi: 10.1007/s12613-016-1246-8
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  822
  • HTML全文浏览量:  473
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-05
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回