• 《工程索引》(EI)刊源期刊
  • 综合性科学技术类中文核心期刊
  • 中国科技论文统计源期刊
  • 中国科学引文数据库来源期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

劈裂荷载下的岩石声发射及微观破裂特性

刘希灵 刘周 李夕兵 韩梦思 杨柳青

刘希灵, 刘周, 李夕兵, 韩梦思, 杨柳青. 劈裂荷载下的岩石声发射及微观破裂特性[J]. 工程科学学报, 2019, 41(11): 1422-1432. doi: 10.13374/j.issn2095-9389.2018.11.29.005
引用本文: 刘希灵, 刘周, 李夕兵, 韩梦思, 杨柳青. 劈裂荷载下的岩石声发射及微观破裂特性[J]. 工程科学学报, 2019, 41(11): 1422-1432. doi: 10.13374/j.issn2095-9389.2018.11.29.005
LIU Xi-ling, LIU Zhou, LI Xi-bing, HAN Meng-si, YANG Liu-qing. Acoustic emission and micro-rupture characteristics of rocks under Brazilian splitting load[J]. Chinese Journal of Engineering, 2019, 41(11): 1422-1432. doi: 10.13374/j.issn2095-9389.2018.11.29.005
Citation: LIU Xi-ling, LIU Zhou, LI Xi-bing, HAN Meng-si, YANG Liu-qing. Acoustic emission and micro-rupture characteristics of rocks under Brazilian splitting load[J]. Chinese Journal of Engineering, 2019, 41(11): 1422-1432. doi: 10.13374/j.issn2095-9389.2018.11.29.005

劈裂荷载下的岩石声发射及微观破裂特性

doi: 10.13374/j.issn2095-9389.2018.11.29.005
基金项目: 国家重点研发计划资助项目(2016YFC0600706);中南大学研究生自由探索创新资助项目(2018zzts757)
详细信息
    通讯作者:

    E-mail:lxlenglish@163.com

  • 中图分类号: TD76

Acoustic emission and micro-rupture characteristics of rocks under Brazilian splitting load

More Information
  • 摘要: 通过开展花岗岩和大理岩巴西圆盘声发射试验,结合扫描电镜进行破裂面微观形貌分析,探讨了劈裂荷载下岩石声发射特性与微观破裂机制的关系。结果表明:基于RA(上升时间与幅值的比值)和AF(平均频率)的变化趋势,不同裂纹模式(拉伸裂纹、剪切裂纹以及复合裂纹)的分布和破坏强度受岩石结构影响,但岩石裂纹演化过程不受其影响。相应地,两种岩样破裂信号均以400~499 kHz为主,100~199 kHz的信号次之,但不同破裂阶段的峰值频率变化趋势显著不同。在微观形貌上,花岗岩劈裂面的微观形貌以层叠状、台阶状及平坦状为主;而大理岩以光滑多面体状为主。此外,结合频率−尺度缩放关系可推测,400~499 kHz的信号应主要来自钾长石、大理岩矿物颗粒内部的破裂;100~199 kHz的信号应主要来自石英矿物颗粒内部不连续分离以及压密阶段矿物颗粒之间的滑移。
  • 图  1  两种岩石微观结构图. (a)花岗岩; (b)大理岩

    Qtz—石英; Kfs—钾长石; Dol—白云石; Bt—黑云母; PI—斜长石; Cal—方解石

    Figure  1.  Micro-structures of rock samples in the transparent refractive index experiment: (a) granite; (b) marble

    图  2  巴西劈裂传感器布置示意图

    Figure  2.  Layout of AE sensors in the Brazilian split tests

    图  3  巴西劈裂实验中两种岩石的破坏形态. (a)花岗岩; (b)大理岩

    Figure  3.  Failure form of granite and marble in the Brazilian split test: (a) granite; (b) marble

    图  4  劈裂荷载下花岗岩和大理岩RA和AF参数随时间的变化趋势(通过移动平均线实现[13]). (a)花岗岩; (b)大理岩

    Figure  4.  Trends of the mean RA and average frequency parameters under a splitting load (the two AE parameters are obtained by using moving averages [13]): (a) granite; (b) marble

    图  5  劈裂荷载下岩石声发射信号RA值与AF值的关系分布图. (a)花岗岩RA值与AF值分布图; (b)花岗岩RA值与AF值数据密度云图; (c)大理岩RA值与AF值分布图; (d)大理岩RA值与AF值数据密度云图

    Figure  5.  RA and average frequency distribution diagrams of granite and marble under a splitting load: (a) RA versus AF distribution diagram in granite; (b) RA versus AF data density map in granite; (c) RA versus AF distribution diagram in marble; (d) RA versus AF data density map in marble

    图  6  两种岩石的峰值频率随加载时间的变化. (a)花岗岩; (b)大理岩; (c)花岗岩峰值频率随时间变化的密度云图; (d)大理岩峰值频率随时间变化的密度云图

    Figure  6.  Temporal peak frequency distribution under different splitting loads: (a) granite and (b) marble; (c) peak frequency versus time data density maps in granite; (d) peak frequency versus time data density maps in marble

    图  7  不同应力水平下的峰值频率变化. (a)花岗岩; (b)大理岩

    Figure  7.  AE peak frequencies at different stress levels: (a) granite; (b) marble

    图  8  花岗岩劈裂面电镜扫描形貌图. (a)石英颗粒层平坦状形貌图; (b)钾长石台阶状形貌图; (c)钾长石颗粒叠状形貌图; (d)石英颗粒能谱图; (e)台阶状钾长石颗粒能谱图; (f)层叠状钾长石颗粒能谱图

    Figure  8.  SEM images of the splitting surfaces of granite: (a) “smooth planar” morphology of quartz; (b) “sidestep” morphology of k-feldspar; (c) “stack-up” morphology of k-feldspar; (d) energy spectrum diagram of quartz; (e) energy spectrum diagram of “sidestep” morphology of k-feldspar; (f) energy spectrum diagram of “stack-up” morphology of k-feldspar

    图  9  大理岩劈裂面电镜扫描形貌图. (a)白云石颗粒光滑多面体状形貌图; (b)方解石聚片双晶结构形貌图; (c)图(a)黑圈区域高分辨率下的形貌图; (d)白云石颗粒能谱图; (e)方解石颗粒能谱图

    Figure  9.  SEM photos of the fracture surfaces of marble in the Brazilian split test: (a) “smooth polyhedrals” morphology of dolomite; (b) “polycrystalline” morphology of calcite; (c) high-magnification morphology of the black square in (a); (d) energy spectrum diagram of dolomite; (e) energy spectrum diagram of calcite

    表  1  岩样基本参数

    Table  1.   Basic parameters of the rock samples

    试样编号直径/mm高/mm密度/(g·cm−3)波速/(m·s−1)
    G148.4149.952.614197.83
    G248.5750.362.634272.61
    G348.3350.622.624211.35
    M150.9949.322.853825.41
    M250.3548.192.783901.74
    M350.7948.572.853857.66
    下载: 导出CSV

    表  2  声发射设备参数设置

    Table  2.   Parameter settings of the acoustic emission device

    门槛值/
    dB
    前置增益/
    dB
    采样长度/
    kb
    采样频率/
    MHz
    PDT/
    µs
    HLT/
    µs
    HDT/
    µs
    404051050300200
    下载: 导出CSV

    表  3  不同岩石声发射RA-AF分布差异

    Table  3.   Differences in RA-AF distribution obtained from Fig. 5

    岩石类型编号RA值/(ms·V−1)AF值/kHz
    花岗岩G10~1.3675~184
    G20~1.2280~177
    G30~1.1382~186
    平均值0~1.2479~182
    大理岩M10~0.52100~174
    M20~0.7193~167
    M30~0.8697~185
    平均值0~0.7097~175
    下载: 导出CSV

    表  4  巴西劈裂荷载下岩石声发射峰值频率分布

    Table  4.   Distribution percentages of AE peak frequency for four rock types in the Brazilian split test

    试样编号峰值频率占比/%
    <100 kHz100~199 kHz200~299 kHz300~399 kHz≥400 kHz
    G15.9229.336.848.0449.86
    G24.8514.154.186.2470.58
    G34.3519.927.838.4159.50
    平均值5.0421.136.287.5659.98
    M17.1926.8711.353.5651.03
    M215.6432.210.881.7549.52
    M36.9720.400.012.4060.21
    平均值9.9326.497.412.5753.58
    下载: 导出CSV
  • [1] 王晓军, 冯萧, 赵康. 不同回采断面顶板充填体破裂声发射数值模拟研究. 矿业研究与开发, 2011, 31(1):9

    Wang X J, Feng X, Zhao K. Numerical simulation on acoustic emission of roof fill failure of mining drift with different cross-section. Min Res Dev, 2011, 31(1): 9
    [2] Zhang S W, Shou K J, Xian X F, et al. Fractal characteristics and acoustic emission of anisotropic shale in Brazilian tests. Tunnelling Underground Space Technol, 2018, 71: 298 doi: 10.1016/j.tust.2017.08.031
    [3] Lockner D. The role of acoustic emission in the study of rock fracture. Int J Rock Mech Min Sci Geomech Abstr, 1993, 30(7): 883 doi: 10.1016/0148-9062(93)90041-B
    [4] Rudajev V, Vilhelm J, LokajíČek T. Laboratory studies of acoustic emission prior to uniaxial compressive rock failure. Int J Rock Mech Min Sci, 2000, 37(4): 699 doi: 10.1016/S1365-1609(99)00126-4
    [5] Yang L, Kang H S, Zhou Y C, et al. Frequency as a key parameter in discriminating the failure types of thermal barrier coatings: cluster analysis of acoustic emission signals. Surf Coat Technol, 2015, 264: 97 doi: 10.1016/j.surfcoat.2015.01.014
    [6] 张艳博, 梁鹏, 刘祥鑫, 等. 基于声发射信号主频和熵值的岩石破裂前兆试验研究. 岩石力学与工程学报, 2015, 34(增刊1): 2959

    Zhang Y B, Liang P, Liu X X, et al. Experimental study on precursor of rock burst based on acoustic emission signal dominant-frequency and entropy. Chin J Rock Mech Eng, 2015, 34(Suppl 1): 2959
    [7] Shiotani T, Ohtsu M, Ikeda K. Detection and evaluation of AE waves due to rock deformation. Construction Building Mater, 2001, 15(5-6): 235 doi: 10.1016/S0950-0618(00)00073-8
    [8] Carpinteri A, Corrado M, Lacidogna G. Heterogeneous materials in compression: correlations between absorbed, released and acoustic emission energies. Eng Fail Anal, 2013, 33: 236 doi: 10.1016/j.engfailanal.2013.05.016
    [9] 肖福坤, 刘刚, 秦涛, 等. 拉−压−剪应力下细砂岩和粗砂岩破裂过程声发射特性研究. 岩石力学与工程学报, 2016, 35(增刊2): 3458

    Xiao F K, Liu G, Qin T, et al. Acoustic emission (AE) characteristics of fine sandstone and coarse sandstone fracture process under tension-compression-shear stress. Chin J Rock Mech Eng, 2016, 35(Suppl 2): 3458
    [10] Wang H J, Liu D A, Cui Z D, et al. Investigation of the fracture modes of red sandstone using XFEM and acoustic emissions. Theor Appl Fract Mech, 2016, 85: 283 doi: 10.1016/j.tafmec.2016.03.012
    [11] 曾鹏, 刘阳军, 纪洪广, 等. 单轴压缩下粗砂岩临界破坏的多频段声发射耦合判据和前兆识别特征. 岩土工程学报, 2017, 39(3):509 doi: 10.11779/CJGE201703015

    Zeng P, Liu Y J, Ji H G, et al. Coupling criteria and precursor identification characteristics of multi-band acoustic emission of gritstone fracture under uniaxial compression. Chin J Geotech Eng, 2017, 39(3): 509 doi: 10.11779/CJGE201703015
    [12] Bucheim W. Geophysical methods for the study of rock pressure in coal and potash salt mining//International Strata Control Congress. Leipzig, 1958: 222
    [13] Rodríguez P, Celestino T B. Application of acoustic emission monitoring and signal analysis to the qualitative and quantitative characterization of the fracturing process in rocks. Eng Fract Mech, 2019, 210: 54 doi: 10.1016/j.engfracmech.2018.06.027
    [14] 梁昌玉, 吴树仁, 李晓. 中低应变率范围内单轴压缩下花岗岩断口细-微观特征研究. 岩石力学与工程学报, 2015, 34(增刊1): 2977

    Liang C Y, Wu S R, Li X. Research on micro-meso characteristics of granite fracture under uniaxial compression at low and intermediate strain rates. Chin J Rock Mech Eng, 2015, 34(Suppl 1): 2977
    [15] Zhang Q B, Zhao J. Quasi-static and dynamic fracture behaviour of rock materials: Phenomena and mechanisms. Int J Fract, 2014, 189(1): 1 doi: 10.1007/s10704-014-9959-z
    [16] Manthei G. Characterization of acoustic emission sources in a rock salt specimen under triaxial compression. Bull Seismological Soc Am, 2005, 95(5): 1674 doi: 10.1785/0120040076
    [17] Alkan H, Cinar Y, Pusch G. Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests. Int J Rock Mech Min Sci, 2007, 44(1): 108 doi: 10.1016/j.ijrmms.2006.05.003
    [18] 李世愚, 和泰名, 尹祥础. 岩石断裂力学. 北京: 科学出版社, 2015

    Li S Y, He T M, Yin X C. Rock Fracture Mechanics. Beijing: Science press, 2015
    [19] Ohno K, Ohtsu M. Crack classification in concrete based on acoustic emission. Construction Build Mater, 2010, 24(12): 2339 doi: 10.1016/j.conbuildmat.2010.05.004
    [20] 臧绍先. 地震应力降与岩石破裂应力降. 地震学报, 1984, 6(2):182

    Zang S X. Earthquake stress drop and the stress drops of rock fracture. Acta Seismologica Sinica, 1984, 6(2): 182
    [21] Backers T, Stanchits S, Dresen G. Tensile fracture propagation and acoustic emission activity in sandstone: the effect of loading rate. Int J Rock Mech Min Sci, 2005, 42(7-8): 1094 doi: 10.1016/j.ijrmms.2005.05.011
    [22] Mogi K. Study of elastic shocks caused by the fracture of heterogeneous materials and its relation to earthquake phenomena. Bull Earthquake Res Inst Univ Tokyo, 1962, 40: 125
    [23] Scholz C H. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull Seismological Soc Am, 1968, 58(1): 399
    [24] Burlini L, Vinciguerra S, Toro G D, et al. Seismicity preceding volcanic eruptions: new experimental insights. Geology, 2007, 35(2): 183 doi: 10.1130/G23195A.1
    [25] Benson P M, Vinciguerra S, Meredith P G, et al. Laboratory simulation of volcano seismicity. Science, 2008, 322(5899): 249 doi: 10.1126/science.1161927
    [26] Eaton D W, van der Baan M, Birkelo B, et al. Scaling relations and spectral characteristics of tensile microseisms: evidence for opening/closing cracks during hydraulic fracturing. Geophys J Int, 2014, 196(3): 1844 doi: 10.1093/gji/ggt498
    [27] Mao W W, Towhata I. Monitoring of single-particle fragmentation process under static loading using acoustic emission. Appl Acoustics, 2015, 94: 39 doi: 10.1016/j.apacoust.2015.02.007
    [28] Hull D. Fractography: Observing, Measuring and Interpreting Fracture Surface Topography. Cambridge: Cambridge University Press, 1999
    [29] Zang A, Wagner C F, Dresen G. Acoustic emission, microstructure, and damage model of dry and wet sandstone stressed to failure. J Geophysl Res, 1996, 101(B8): 17507 doi: 10.1029/96JB01189
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  758
  • HTML全文浏览量:  644
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-29
  • 刊出日期:  2019-11-01

目录

    /

    返回文章
    返回