-
摘要: 建立了球轴承ADAMS多体动力学模型,考虑轴承各元件之间的相互碰撞作用及摩擦力,分析了变工况下动量轮用球轴承的保持架质心的涡动行为,对保持架的运行稳定性做出了定量的分析。讨论了轴承启动加速度大小、轴向载荷和有无重力场对保持架稳定性的影响。结果表明轴承启动加速度增加,缩短了轴承启动过程的时间,引导面对保持架的引导作用增强,较高的转速更有利于保持架运行的稳定,但较大的启动加速度使得轴承摩擦力矩较大;轴向载荷升高加剧了滚动体与保持架的碰撞,增加了保持架的涡动状态,而且轴向载荷的增加使得轴承摩擦力矩增加;失重状态下保持架与套圈的碰撞加剧,保持架涡动增加。Abstract: The momentum wheel is a key device used for orbiting satellite attitude control. Its controlling accuracy is strongly influenced by the cage stability of the ball bearings in momentum wheels. The more stable the cage, the smaller the friction moment of the bearing, and the higher the control accuracy of the momentum wheel. In this study, an ADAMS multi-body dynamic model of ball bearings was built. In this model, the collision and friction were considered, which exist in the components of the ball bearing, that is, the balls, the rings, and the cage. The whirl behavior of the cage of the ball bearing used in the momentum wheel was analyzed under variable working conditions, and the cage stability was quantitatively analyzed. The effects of starting acceleration, axial load, and gravity field on the cage stability were discussed. The results show that an increase in the starting acceleration of the ball bearings can shorten the starting time, and the guiding effect of the guiding face on the cage is enhanced. Moreover, the cage is more stable when the speed of the ball bearing is higher. However, the greater starting acceleration can increase the friction moment of the ball bearing, which can shorten the service life. Under the premise of satisfying the cage stability, a smaller starting acceleration should be used as far as possible to prevent the larger friction moment. An increased axial load causes a strong collision of the cage and balls and increases the cage whirling state. The friction moment of the ball bearing increases when the axial load increases, which can lead to the generation of the wear and heat of bearing. In addition, an increase of the axial load of the ball bearing aggravates the collision of the balls and cage and increases the whirling state of the cage, and this reduces the cage stability. The collision of the cage and ring increases without gravity, causing an increase in the cage whirl.
-
表 1 轴承组件材料属性表
Table 1. Material property of bearing component
零件 密度,ρ/(kg·m−3) 弹性模量,E/Pa 泊松比,μ 外圈 7.90×103 2.06×1011 0.29 内圈 7.90×103 2.06×1011 0.29 滚动体 7.90×103 2.06×1011 0.29 保持架 1.24×103 3.00×109 0.35 表 2 轴承启动加速度大小对保持架质心轨迹演化的影响
Table 2. Influence of acceleration on the evolution of the mass center of cage
α/(r·min−1·s−1) 质心轨迹演化 加速区 稳态区 加速+稳态区 1000 5000 8000 表 3 轴承轴向力对保持架质心轨迹演化的影响
Table 3. Influence of axial load on the evolution of the mass center of cage
Fa/N 质心轨迹演化 加速区 稳态区 加速+稳态区 5 200 -
[1] Ryu S J, Choe B S, Lee J K, et al. Correlation between friction coefficient and sound characteristics for cage instability of cryogenic deep groove ball bearings // Proceedings of the 9th IFToMM International Conference on Rotor Dynamics. Springer, Milan, 2015: 1921 [2] Kingsbury E P. Torque variations in instrument ball bearings. Tribology Trans, 1965, 8(4): 435 [3] Stevens K T. Experimental observations on torque variation caused by bearing cage instabilities // Proceedings of the Second Space Tribology Workshop. Paris, 1980: 101 [4] 张涛, 陈晓阳, 顾家铭, 等. 高速角接触球轴承保持架稳定性研究进展. 航空学报, 2018, 39(7):022026Zhang T, Chen X Y, Gu J M, et, al. Progress of research on cage stability of high-speed angular contact ball bearings. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 022026 [5] 杨咸启, 刘文秀, 李晓玲. 高速滚子轴承保持架动力学分析. 轴承, 2002(7):1 doi: 10.3969/j.issn.1000-3762.2002.07.001Yang X Q, Liu W X, Li X L. Dynamics analysis on cage of high speed roller bearing. Bearing, 2002(7): 1 doi: 10.3969/j.issn.1000-3762.2002.07.001 [6] 刘文秀, 杨咸启, 陈贵. 高速滚子轴承保持架碰撞模型与运动分析. 轴承, 2003(9):1 doi: 10.3969/j.issn.1000-3762.2003.09.001Liu W X, Yang X Q, Chen G. Collision model and motion analysis on cage of high speed roller bearing. Bearing, 2003(9): 1 doi: 10.3969/j.issn.1000-3762.2003.09.001 [7] 叶振环, 李伟, 曲祥君, 等. 椭圆兜孔对高速球轴承保持架动态性能的影响分析. 机械设计与制造, 2016(6):184 doi: 10.3969/j.issn.1001-3997.2016.06.049Ye Z H, Li W, Qu X J, et al. Effect of elliptical pocket on cage dynamic performance of high speed ball bearings. Machinery Des Manufacture, 2016(6): 184 doi: 10.3969/j.issn.1001-3997.2016.06.049 [8] Choe B, Lee J, Jeon D, et al. Experimental study on dynamic behavior of ball bearing cage in cryogenic environments, Part I: effects of cage guidance and pocket clearances. Mechanical Syst Signal Process, 2019, 115: 545 doi: 10.1016/j.ymssp.2018.06.018 [9] Choe B, Kwak W, Jeon D, et al. Experimental study on dynamic behavior of ball bearing cage in cryogenic environments, Part Ⅱ: effects of cage mass imbalance. Mechanical Syst Signal Process, 2019, 116: 25 doi: 10.1016/j.ymssp.2018.06.034 [10] Ghaisas N, Wassgren C R, Sadeghi F. Cage instabilities in cylindrical roller bearings. J Tribol, 2004, 126(4): 681 doi: 10.1115/1.1792674 [11] Ashtekar A, Sadeghi F. A new approach for including cage flexibility in dynamic bearing models by using combined explicit finite and discrete element methods. J Tribol, 2012, 134(4): 041502 doi: 10.1115/1.4007348 [12] 刘秀海. 高速滚动轴承动力学分析模型与保持架动态性能研究[学位论文]. 大连: 大连理工大学, 2011Liu X H. Dynamic Analysis Model of High Speed Rolling Bearings and Dynamic Performance of Cages[Dissertation]. Dalian: Dalian University of Technology, 2011 [13] 姚廷强, 王立华, 刘孝保, 等. 变工况下角接触球轴承保持架稳定性分析. 振动与冲击, 2016, 35(18):172Yao T Q, Wang L H, Liu X B, et al. Dynamic stability analysis on the cage of ball bearing under varying working environment. J Vib Shock, 2016, 35(18): 172 [14] 姚廷强, 黄亚宇, 王立华. 圆柱滚子轴承多体接触动力学研究. 振动与冲击, 2015, 34(7):15Yao T Q, Huang Y Y, Wang L H. Multibody contact dynamics for cylindrical roller bearing. J Vib Shock, 2015, 34(7): 15 [15] 葛世东, 孙红原, 邓印. 球轴承保持架稳定性的模型分析. 轴承, 1997(10):33Ge S D, Sun H Y, Deng Y. Model analysis of stability of ball bearing cage. Bearing, 1997(10): 33 [16] 孙雪, 邓四二, 陈国定, 等. 弹性支承下圆柱滚子轴承保持架稳定性分析. 航空动力学报, 2018, 33(2):487Sun X, Deng S E, Chen G D, et al. Analysis of cage’s stability in a cylindrical roller bearing with elastic support. J Aerospace Power, 2018, 33(2): 487 [17] 吉博文, 景敏卿, 刘恒, 等. 基于ADAMS的球轴承保持架动力学仿真. 机械制造与自动化, 2014, 43(5):113 doi: 10.3969/j.issn.1671-5276.2014.05.037Ji B W, Jing M Q, Liu H, et al. Dynamic analysis and simulation of ball bearing cage based on ADAMS. Machine Build Autom, 2014, 43(5): 113 doi: 10.3969/j.issn.1671-5276.2014.05.037 [18] 谭晶, 储著金, 顾志鑫, 等. 基于盒维数的保持架质心轨迹稳定性分析. 轴承, 2014(5):37 doi: 10.3969/j.issn.1000-3762.2014.05.011Tan J, Chu Z J, Gu Z X, et al. Analysis on stability of mass center trajectory for cages based on box dimension. Bearing, 2014(5): 37 doi: 10.3969/j.issn.1000-3762.2014.05.011 [19] 张乐宇, 肖曙红, 李琦. 角接触球轴承保持架兜孔形状对其稳定性的影响. 润滑与密封, 2017, 42(6):40 doi: 10.3969/j.issn.0254-0150.2017.06.009Zhang L Y, Xiao S H, Li Q. Effect of cage pocket hole shape on stability of angular contact ball bearing. Lubr Eng, 2017, 42(6): 40 doi: 10.3969/j.issn.0254-0150.2017.06.009 [20] 汤鹏, 肖曙红, 李琦. 角接触球轴承保持架稳定性及其摩擦力矩研究. 轴承, 2017(4):5Tang P, Xiao S H, Li Q. Stability and friction torque of the angular contact ball bearing cage. Bearing, 2017(4): 5 [21] 范然然, 姚廷强, 刘孝保, 等. 角接触球轴承保持架稳定性分析. 机械设计与研究, 2017, 33(4):76Fan R R, Yao T Q, Liu X B, et al. Stability analysis of angular contact ball bearing cage. Machine Des Res, 2017, 33(4): 76 -